A Hold első negyed fázisát követő két napra terveztünk bemutatókat Zalaegerszegre. Az időjárási előrejelzések 2019. április 15-re és 16-ra (hétfő, kedd) már derült estéket ígértek.

VCSE - Távcsöves bemutató a zalaegerszegi Dísz téren 2019. április 15-én este - Fotó: Bánfalvi Péter
VCSE – Távcsöves bemutató a zalaegerszegi Dísz téren 2019. április 15-én este – Fotó: Bánfalvi Péter

A facebook és a helyi média segítségét kértük, illetve a keddi programot iskolai propagandával is megtámogattuk.

Hétfőn a zalaegerszegi Dísz tér északi szélén, a szokott helyen állítottuk fel a műszereket: két Dobson-szerelésű, Newton-rendszerű műszer (20 és 15 cm-es nyílásúak, Jandó Attila és Fehér Norbert, utóbbi a VCSE egyesületi kölcsöntávcsövével jött el) egy 70/700 refraktor (Péter Attila), 20×60-as binokulár állványra szerelve (Ágoston Zsolt). A bemutatók elmaradhatatlan eszköze a 100/1000-es Zeiss-refraktor, amelyet Bánfalvi Péter hozott és kezelt. Az egyesületből velünk tartott még Hajgató Zoltán és Kirschbaum Tamás is.

A 20-25 fős közönség nagy érdeklődést mutatott és reményüket fejezték ki, hogy lesz még folytatás.

Kedden az Izsák Iskola előtt állítottuk fel Péter Attila műszerét és a TIT 100/1000 refraktorát. Velünk tartott dr. Cseh Ferenc tagtársunk is. Az érdeklődők létszáma közel azonos volt a Dísz térivel. Az iskola propagandájának köszönhetően sok volt a gyermekes család, de volt olyan érdeklődő is, aki nem marad el egyetlen bemutatóról sem.

A hűvös este ellenére 21-21.30-ig kitartottunk. A Hold erős fénye mellett néhány csillagkép legfényesebb csillagainak megmutatására telt még a lehetőségekből. A távcsövek mellett folyt beszélgetések nagyon hasznosnak bizonyultak. A magunk módján reklámoztuk az egyesületet is.

Májusra ígérjük a következő programsorozatot, amelynek apropója lesz a Csillagászat Napja is.

 

P. Jenniskens holland-amerikai, és J. W. Baggaley új-zélandi csillagászok 2019. március 31-én a Delta Pavonidák (DPA) meteorraj kitörését észlelték. A kitörés detektálásához a CAMS kamerarendszert használták. A RA=309,3 (0,3) fok, D=-60,3 (0,2) fok radiánspontból 59(0,9) km/s sebességgel öt meteor érkezett 17:36 – 17:45 UT közötti röpke, mintegy kilencperces intervallumban. Az öt meteor pályaelemei nagyon hasonlóak voltak egymáshoz (napközelpont 0,9280,004 CSE-re, inklináció 110,10,9 fok (vagyis a pálya retrográd), a perihélium argumentuma 329,01,4 fok, a felszálló csomó hossza 190,4610,003 fok. A pálya nagyon erősen excentrikus, a gyanítható fél nagytengely-méret 20 és 100 CSE közé esik. 2006-ban Jenniskens tanulmánya már jelzett a déli féltekéről megfigyelt vizuális aktivitást, de kamerákkal először sikerült megfogni e raj tagjait. Jenniskens azt gyanítja, hogy ennek a rajnak a szülőégitestje a C/1907 G1 (Grig-Mellish) üstökös lehet. Ennek a kométának a pályaelemei feltűnő hasonlóságot mutatnak a DPA-rajéval, ha figyelembe veszik, hogy a nagybolygók perturbációi a raj pályasíkját elforgatják, ami a felszálló csomó hosszának változásában nyilvánul meg leginkább.

 

(Forrás: CBET 4617)

VCSE - A Tojás-köd, tudományos jelzésével RAFGL 2688 a Hubble Űrtávcső felvételén - HST
VCSE – A Tojás-köd, tudományos jelzésével RAFGL 2688 a Hubble Űrtávcső felvételén – HST

Kellemes húsvétot kívánunk minden kedves tagtársunknak, barátunknak és olvasóknak a népszerűen Tojás-ködnek nevezett objektum fényképével!

A felvételt a Hubble Űrtávcső készítette róla. Tudományos jelzete RAFGL 2688 vagy CRL 2688. A Naprendszertől mintegy 3000 fényévre elhelyezkedő bipoláris protoplanetáris ködről van szó. (A protoplanetáris köd nem keverendő össze a protoplanetáris diszkkel (vagy protoplanetáris koronggal). A protoplanetáris köd egy születőben lévő planetáris köd, egy öreg csillag haldokló fázisa; a protoplanetáris diszk egy születőben lévő bolygórendszert jelöl. A hasonlóan hangzó elnevezés szerencsétlen és keverésre ad alkalmat, de a planetáris ködök is a kistávcsövekben a planétákhoz hasonló vizuális megjelenésükről kapták a nevüket.) A bipoláris azt jelenti, hogy két, egymással ellentétes irányba kinyúló-kifúvó része van: a képen ezt nyalábként (jetként) láthatjuk, ahogy egymással szemben, majdnem vízszintesen, egymással kis szöget bezárva – valójában egy kúp felületén – anyag látszik vonalak mentén. A planetáris ködök mintegy 10-20%-a bipoláris, így a protoplanetáris ködök egy része is az kell, hogy legyen. Felteszik, de nem bizonyították, hogy a bipolárisságot egy kísérőcsillag hozza létre.

A Tojás-ködöt 1975-ben fedezték fel közepes infravörös tartományban (11 mikrométeres hullámhosszon észlelve). Maga az észlelés is különösen történt: az amerikai légierő geofizikai laboratóriumának egy rakétáján volt elhelyezve a detektor. A látható fény tartományában is látszik, ezért már Fritz Zwicky svájci csillagász korábban észrevette, de a látható fénybeli képek alapján tévesen galaxispárnak katalogizálta.

A protoplanetáris köd pedig azt jelenti, hogy ez egy olyan ködösség, amiben egy öreg, haldokló AGB-csillag éppen lefújja a külső rétegeit, és majd planetáris ködöt hoz létre. A protoplanetáris köd a planetáris ködképződés egyik első fázisa, vagyis itt egy születőben lévő planetáris ködöt láthatunk.

A HST felvételén nemcsak a négy kiáramló anyagvonal látszik, hanem rendkívül érdekes, hagymahéjszerűen elhelyezkedő héjak is, ahol az anyag sűrűbb, a héjak között pedig ritkább. Az AGB-csillag pulzálásszerűen dobja le magáról a rétegeit, ezért látjuk a héjakat. Legbelül viszont egy sötétebb, korongszerű rész látszik, amit egy erősen átlátszatlan, sűrű porból álló, valószínűleg korong, vagy inkább fánk alakú alakzat okoz, ami eltakarja a középen lévő csillag fényét. De itt-ott átlátszik, és a kijutó csillagfény a héjakról visszaverődve a szemünkbe jut. A ködösség polarizált fényt sugároz, nagyobb távcsövekkel és polárszűrők alkalmazásával már vizuálisan is észlelhető ez a jelenség.

A Tojás-köd a Hattyú csillagképben látszik, 30×15 ívmásodperc méretű, de nagyon halvány, látható fényben mindössze 14 magnitúdós. A VCSE 2019. ápr. 26-28-i észlelőhétvégéjén a 46 cm-es Dobsonnal megpróbálkozunk vele.

Első alkalommal sikerült egy extragalaktikus, nagyon nagy tömegű fekete lyuk  (ang. supermassive black hole) legközelebbi környezetéről képet alkotni. Az áttörésnek számító eredményt az Event Horizon Telescope nevű rádiócsillagászati műszeregyüttessel érték el. Még soha nem “láttunk” fekete lyukat ilyen részletes felbontásban, és ennyire közel az eseményhorizontjához. A fekete lyukak kiemelkednek a sötétségből.

Nagy várakozás előzte meg az Eseményhorizont Távcsővel (Event Horizon Telescope) készült első felvételek és a vele kapott első eredmények közzétételét. Mi is írtunk már 2018-ban arról, hogy mire számíthatunk. A legelső képeket és eredményeket 2019. április 10-én tették közzé, mi ezeket a www.space.com alapján szemlézzük.

 

VCSE - A kutatók által kapott első fekete lyuk-sziluett. A kép az EHT-val készült az M87 extragalxis közepén található nagyon nagytömegű fekete lyukról. A 6,5 milliárd naptömegű fekete lyuk meghajlítja a mögötte lévő csillagok, csillagközi gáz fényét. A gyűrűn belül található üres terület a fekete lyuk sziluettje. Ez a nagyon nehezen megkapott kép a fekete lyukak létezésének eddigi legerősebb bizonyítéka. - Forrás: Event Horizon Telescope Collaboration
VCSE – A kutatók által kapott első fekete lyuk-sziluett. A kép az EHT-val készült az M87 extragalaxis közepén található nagyon nagy tömegű fekete lyukról. A 6,5 milliárd naptömegű fekete lyuk meghajlítja a mögötte lévő csillagok, csillagközi gáz fényét. A gyűrűn belül található üres terület a fekete lyuk sziluettje. Ez a nagyon nehezen megkapott kép a fekete lyukak létezésének eddigi legerősebb bizonyítéka. – Forrás: Event Horizon Telescope Collaboration

Fekete lyukak definíció szerint a térnek olyan tartományai, amelyből bentről kifelé semmi sugárzás vagy anyag nem távozhat el az objektum nagy gravitációja miatt. Arra gondolhatnánk, hogy ezért semmi, még a fény sem hagyhatja el a felszínüket, ezért nem lehet őket látni. De például a környezetükre kifejtett gravitációs hatásuk révén, vagy az általuk széttépett csillagok anyagának áramlása és sugárzása révén fel lehet őket fedezni. A Hawking-sugárzás pedig mégiscsak lehetővé teszi, hogy valami elhagyja a fekete lyukat. Leegyszerűsítve: ha egy fekete lyuk felszínén egy tömeg nélküli részecske éppen fénysebességgel kering (pl. egy foton), és energiája elég nagy (vagyis pl. a foton hullámhossza nagyon kicsi, frekvenciája nagy), akkor széteshet két részecskére, pl. egy elektronra és pozitronra. Ekkor az elektromos töltés megmarad. A párkeltés során a haladó irányba mutató lendület is megmarad, de keletkezhet egy erre merőleges komponens is mindkét részecskéhez. Ekkor pl. a pozitron befelé megy, az elektron kifelé, így ez a lendületkomponens is megmarad. Tehát valami nagy ritkán – pontosabban annak a valaminek egy része, példánkban a fele tömeg – elhagyhatja a fekete lyukat. Így akár egy fekete lyuk “világíthat” is. Értelmes dolog lehet ezért egy fekete lyuk “magnitúdójáról” beszélni. A Hawking-sugárzás azonban a legtöbb csillagászati fekete lyuk esetén rendkívül – végtelenül – gyenge, műszereinkkel nem érzékelhető, mert bőven a műszerek érzékenysége alatt marad. A fekete lyukakhoz legeslegközelebbi térből azonban jöhet fény és sugárzás, pl. a behulló anyag itt még – elvileg – észlelhető. (A Hawking-sugárzás léte nem mond ellent a fekete lyuk definiciójának, hiszen az nem a fekete lyuk belsejéből jön, ahonnét semmi nem jöhet ki, hanem a felszínéről, ami ugye nem belül van, hanem határfelület.)

Az Eseményhorizont Távcsőrendszer az M87-beli és a mi Tejútrendszerünkben lévő, Sagittarius A*-nak (Sgr A*) nevezett fekete lyukakat, illetve közvetlen környezetüket szeretnék megvizsgálni. Az M87-belire vonatkozó eredményeket 2019. április 10-én tették közzé sajtókonferencia keretében. A képek a fekete lyukak vizsgálatának egy fontos, új lépése, egy új vizsgálati lehetőség: egy egészen ismeretlen világ nyílik ki számunkra. Az eddig csak elméletek és spekulációk szintjén lévő elképzelések most észlelésekkel megerősítést nyerhetnek – vagy megcáfolhatják őket.

Az Eseményhorizont Távcsőben (EHT) több, mint 200 kutató dolgozik együtt. Némelyikük már két évtizede tagja a teljes glóbuszra kiterjedő együttműködésnek. A cél néhány közeli, nagyon nagy tömegű, galaxisok központjában található központi fekete lyuk sziluettjét és közvetlen környezetét rádióhullámhosszakon feltérképezni, és képet alkotni róla. Bár ez rádiócsillagászati kép, sok helyen fotónak nevezik (noha a fotó szót csak látható fénybeli képekre szokták sokszor használni). Az első észlelések ezzel a távcsőrendszerrel 2017 áprilisában történtek, az első adatfeldolgozási lépések 800 magos számítógépklaszteron 2017 decemberében estek meg, az első eredmények pedig 2019-ben kerültek közlésre.

Az első célpont az M87 (Messier 87) extragalaxisban lévő, 6,5 milliárd naptömegű behemót fekete lyuk volt. A másik célpont az Sgr A*, ami csak 4,3 millió naptömegű. Most csak az M87-ről szóló eredményeket és képet közölték. Az M87-beli központi fekete lyuk tőlünk mért távolsága 53,5 millió fényév, az Sgr A* csak 26 ezer fényévre található. Az Sgr A* látszó mérete olyan pici tőlünk nézve, “mintha egy narancsot néznénk a Holdon” mondta egy csillagász a space.com-nak.

VCSE - Az EHT rádiótávcsöveinek elhelyezkedése a Földön. - Forrás: Event Horizon Telescope Collaboration
VCSE – Az EHT rádiótávcsöveinek elhelyezkedése a Földön. – Forrás: Event Horizon Telescope Collaboration

Minden éjszaka kb. 1 petabájtnyi észlelési adat keletkezett, így az adatfeldolgozás egy évnél is hosszabb ideig tartott egy nagyméretű szuperszámítógépen. Például ekkora adatmennyiséget nem is lehetett az interneten átküldeni a rádiótávcsövektől az adatfeldolgozási helyre, különböző adathordozókon kellett fizikailag szállítani. Vagyis adathordózóra rámásolták, és azt a posta vitte. A hagyományos postaszolgáltatás még mindig gyorsabb ekkora adatmennyiség esetén, mint az internet a jelenleg elérhető legnagyobb sávszélességgel! A Déli Sarkon lévő távcsőrésztvevőtől például nem is lehetett addig elhozni az adatokat, amíg elég meleg nem lett a sarkvidéken.

Igazán izgalmas, hogy az M87-re az elméleti fizika, az általános relativitáselmélet nyomán számolt kép igen jó összhangban van a most elvégzett mérésekkel, így egyben az általános relativitáselmélet további bizonyítékának tekinthető. A szimulált fekete lyuk-körvonal (sziluett) és az anyagbefogási korong (akkréciós diszk) rádióhullámhosszak-beli kinézete összhangban van a mérttel. Ez ugyan megnyugtatónak hangzik, de ilyen erős gravitációs térben soha nem ellenőrizték korábban ilyen pontossággal az általános relativitáselméletet! Márpedig erős gravitációs térre konkurens elméletek is akadtak (vagy akadnak). Ahogy a kutatók egyike mondta: “A mérés párbeszéd a természettel”.

 

VCSE - Általános relativitásleméleti magnetohidrodinamikával szimulált fekete lyuk sziluett rádióhullámhosszakon. Az akkrációs diszkre a képen 45 fokos szögből nézünk rá (az egyenlítójéhez képest). A bal oldalon azért fényesebb a fekete lyuk által meghajíltott fény, mint ajobb oldlaon, mert a Doppler-fókuszálás miatta felénk közeledő anyag fényesedik, a távolodó elhalványodik. A központi fekete részben van a fekete lyuk. Előtte az akkréciós diszk egyes részei láthatók. - Forrás: Hotaka Shiokawa, https://www.cbc.ca/news/technology/black-hole-photo-1.5089403
VCSE – Általános relativitáselméleti magnetohidrodinamikával szimulált fekete lyuk sziluett rádióhullámhosszakon. Az akkréciós diszkre a képen 45 fokos szögből nézünk rá (az egyenlítőjéhez képest). A bal oldalon azért fényesebb a fekete lyuk által meghajlított fény, mint a jobb oldalon, mert a Doppler-fókuszálás miatt a felénk közeledő anyag fényesedik, a távolodó pedig elhalványodik. A központi fekete részben van a fekete lyuk. Előtte az akkréciós diszk egyes részei láthatók. – Forrás: Hotaka Shiokawa, https://www.cbc.ca/news/technology/black-hole-photo-1.5089403

 

Az M87 fekete lyukának EHT-képén az látszik, hogy a környezetből a fekete lyukba hulló gáz hogyan spirálozódik befelé. Ez az anyagbefogási (akkréciós) folyamat részleteiben nagyon kevéssé ismert, közelről soha nem láttuk. Pedig a fekete lyuk gravitációja által felgyorsított gázrészecskéket a lyuk mágneses tere fókuszálja, és ez hozza létre a megfigyelhető, a fekete lyuk környezetéből kilövellő nyalábokat (jeteket). A nyalábokban közel fénysebességgel mozog az anyag.

A képek analízisével a fekete lyuk forgását is lehet majd tanulmányozni, esetleg a forgásidőt megállapítani. Ezek természetesen közvetett mérések lesznek: a behulló anyag mozgására hathat a fekete lyukkal együtt forgó mágneses tere. Az is izgalmas kérdés, hogy egy központi, nagyon nagy tömegű fekete lyuk hogyan alakítja a galaxis fejlődését és viszont, illetve milyen hatással van erős gamma-, röntgen- és ultraibolya sugárzása a galaxisbeli életre. Ez különösen fontos akkor, amikor a fekete lyukba nagyobb mennyiségű anyag hullik be. Pl. ha egy csillag helyett egy egész nyílthalmazt nyel el, vagy egy másik, közelben elhaladó galaxis árapályereje csillagkeletkezési hullámot indít be. Ilyenkor nemcsak sok szupernóva lesz, de a fekete lyukba is több anyag hullik be, megnövelve az akkréciós korong tömegét és méretét a fekete lyuk körül. Ez erős sugárzási folyamatokat indít be. Jelenleg az Sgr A* inaktív a mi Galaxisunkban.

Későbbiekben az EHT eredményeit majd gravitációs hullámdetektorokéval lehet kombinálni, így még többet megtudva ezekről a rejtélyes, a galaxisfejlődésben és a galaktikus lakhatóságban fontos szerepet játszó objektumokról.

Egészen biztos, hogy az EHT eredményei a jövőben is izgalmasak lesznek. A mostani képek további analízise a következő hónapokban még újabb eredményeket ad majd. Érdemes követni az ismeretterjesztő oldalakat a legújabb fejleményekért.

Videós magyarázat a képről (angolul).

További cikkek fekete lyukakról a VCSE honlapján itt.
Ez nem a cikk végleges változata, a benne előforduló hibák javítás alatt állnak!

A következőkben áprilisi amatőrcsillagászati megfigyelésekhez szeretnék ajánlani néhány objektumot.

A Nap áprilisban 05:40 (NYISZ) körül kel, 19:50 (NYISZ) körül nyugszik. (A NYISZ a nyári időszámítás rövidítése – NYISZ = UT + 2 h, NYISZ = KözEI+ 1 h, ahol UT a világidő, KöZEI a közép-európai idő rövidítése.) Az észlelés napnyugta után – témaválasztástól, távcső felállításától függően – körülbelül egy órával már elkezdhető. A csillagászati szürkület a napnyugta utáni, illetve napkelte előtti 1,5-2 órát felölelő időszak. Újhold április 5-én, első negyed április 12-én, telihold április 19-én, utolsó negyed április 27-én lesz. (Forrás: http://vcse.hu/).

Csillagászati szürkület alatt azt az időszakot értjük, amikor a Nap a -18° horizont alatti magasságot még nem éri el, de már legalább -12°-on vagy mélyebben van. A -18°-os érték elérése után áll be a teljes sötétség.

Látványosabb események UT időzóna szerint (UT = NYISZ – 2 óra):

04.01. 00:13: A Hold földtávolban 405 575,1 km-re, látszó átmérője 29,5′
04.06. 17:39 33 órás holdsarló 7° magasan
04.09. 20: A Hold az Aldebaran közelében
04.10. A Merkúr naptávolban
04.10: A Jupiter hátráló mozgásba kezd
04.11. A Merkúr legnagyobb nyugati kitérésben, 28°-ra a Naptól
04.14. 19:37 A Hold mögé belép a 8 Leonis (6 magnitúdó, 72%-os holdfázis)
04.16. 22:06: A Hold földközelben 364 207,1 km-re, látszó átmérője 32,8′
04.18: A Vénusz naptávolban
04.19. A Nap a Halakból átlép a Kos csillagképbe
04. 21. Húsvétvasárnap
04.22. Az Uránusz együttállásban a Nappal
04.23. 00:00 A Lyridák meteorraj maximuma (ZHR=18)
04.23. 03:06 A Jupiter 5°-ra a 84%-os Holdtól
04.25. 03:02 A Szaturnusz 6°-ra a 67%-os Holdtól
04.27. 23:13 Az Io fogyatkozásának kezdete
04.28. 02:24 Az Europa fogyatkozásának kezdete
04.28. 18:17: A Hold földtávolban 404 580,0 km-re, látszó átmérője 29,5′
04.30. A Szaturnusz hátráló mozgásba kezd

Az (1) Ceres törpebolygó áprilisban 8,1 mag-ról 7,6 mag-ra fényesedik fel. A hó elején éjfélkor kel és hajnalban nyugszik, a hó végén már este 10 körül felkel és hajnali fél három felé delel. Júniusban lesz szembenállásban a Nappal, akkorra eléri a 7,0 mg-s fényességet is.

A Merkúr 2019. évi láthatóságát lásd itt. Április 11-én legnagyobb nyugati elongációban, de csak 45 perccel kel a Nap előtt, így gyakorlatilag megfigyelhetetlen a hó folyamán.

A Vénusz a hó közepén Zalaegerszegről nézve 5:11-kor kel és 16:45-kor nyugszik, ezért megfigyelhetetlen. Egyre korábban kel. A hó végén  már 4:51-kor kel, és a hajnali égbolton, keleten, alacsonyan elkezd feltűnni a látóhatár felett.

A Mars Zalaegerszegről nézve 8 órakor kel, a hó közepén 23:43-kor nyugszik. Így az esti nyugati égbolton, 1,6 mg-s vörös objektumként még megfigyelhető a Bikában. 16-án 7 fokra az Aldebarantól. Szép asztrotájképek készíthetők a Marssal, a Hyadokkal és a Plejádokkal.

A Jupiter -2,5 mg-s, a Hold és a Vénusz után az éjszakai égbolt harmadik legfényesebb égitestje. Éjfél után kel a hó közepén (00:38-kor) Zalaegerszegről nézve, az éjszaka második felében jól látszik a Kígyótartóban.

A Szaturnusz 0,4 mg-s, hajnali 2:20 körül kel Zalaegerszegről nézve, és a Nyilas keleti oldalán látszik.

Az Uránusz a Kosban jár, túl közel a Naphoz, nem megfigyelhető.

A Neptunusz a Vízöntőben jár, hajnali 5 körül kel, nem megfigyelhető.

 

Olvasd tovább