VCSE - röntgenfényben megfigyelhető szuperbuborékok az NGC 3079 galaxisban a Chandra röntgenműhold felvételén - APOD, NASA
VCSE – Röntgenfényben megfigyelhető szuperbuborékok az NGC 3079 galaxisban a Chandra röntgenműhold felvételén – APOD, NASA

A fenti kép a Chandra műhold röntgentartományban működő távcsövével készült, és 2019. március 5-én volt a Nap Csillagászati Képe. A tőlünk kb. 50 millió fényévre elhelyezkedő, a Nagygöncöl (Ursa Maior, UMa) csillagképben látható NGC 3079 rudas (horgas) spirálgalaxist mutatja, de nem a látható fényben, hanem röntgentartományban. A 11,5 magnitúdós galaxis közepes amatőrcsillagászati távcsövekkel is látható, különösen áprilisban, amikor az UMa magasan a fejünk felett jár. A kép érdekessége, hogy ún. szuperbuborékok láthatók rajta, amiket az alábbi képen külön is bejelöltek:

VCSE - Szuperbuborékok (supperbubbles) az NGC 3079 extragalxisban - APOD, NASA, CHandra
VCSE – Szuperbuborékok (supperbubbles) az NGC 3079 extragalxisban – APOD, NASA, Chandra

A képen a “supermassive black hole” felirat a két szuperbuborék között az NGC 3079 extragalaxis közepén található, kb. 2,4 millió naptömegű, nagyon nagytömegű fekete lyuk helyét mutatja. A szuperbuborék létrejötte ehhez a központi fekete lyukhoz kapcsolható. Az itt megfigyelhető szuperbuborékok 3000-3500 fényév méretűek lehetnek. Az NGC 3079-ben jelenleg láthatók talán egymillió évvel ezelőtt jöttek létre. Azt gyanítják, hogy kb. minden 10 millió évben egyszer aktívvá válik e fekete lyuk, és nagysebességű részecskéket lövell bele a csillagközi anyagba. Ezzel a csillagközi anyagot összesöpri, annak sűrűsége megnő, és nagy csillagkeletkezési hullám indul be.

A szuperbuborékok és a buborékok a csillagközi anyag olyan tartományai, amelyek belsejében a csillagközi anyag sokkal ritkább, mint a buborék/szuperbuborék határán, Pont, mint egy szappanbuborékban… A buborékok és szuperbuborékok idővel eloszlanak, így eltűnnek a galaxisok csillagközi anyagában.

A buborékok létrejötte. A buborékokat szupernóva-robbanások lökéshullámai hozzák létre: a lökéshullám maga előtt összesöpri a csillagközi anyagot, ez lesz a buborék fala. A belső, üreges rész maga a buborék.

Egy szupernóvarobbanásban tipikusan 1045 J energia szabadul fel. Az OB-asszociációkban (vagyis ilyen csillagokból álló nyílthalmazokban) nagyon sok nagytömegű, akár 15-120 naptömegű csillag is van, ezek mind forrók és fiatalok. Nem is lehetnek öregek, mert egy ilyen nagytömegű csillag tömegétől függően négy-öt millió, néhány tízmillió vagy pár százmillió év alatt II-es típusú szupernóvarobbanásban felrobban. A csillag helyén fekete lyuk, neutroncsillag vagy semmi sem marad, attól függően, hogy a csillag magja összeroskadt kompakt objektummá vagy teljesen szétrepült. Természetesen a csillag külső maradványai szupernóvamaradványként: szétrepülő gázfelhőként tágulnak.

Egy-egy ilyen OB-asszociációban csak egy-két tucat csillag van, másokban akár 100 darab is, de ennél több nemigen. (Egyszerűen a csillagközi felhők tömege nem elég nagy, hogy ennél több ilyen nagytömegű csillagot egy csoportban létrehozzanak.) Mivel mindegyik rövid időn belül egymás után szupernóvaként robban fel, az asszociáció létrejötte után néhány tízmillió-százmillió éven belül a halmaztagok szupernóvarobbanások sorozatát hozzák létre: igazi tűzijátékot látunk, ha ki tudjuk várni.

A szupernóvarobbanásokban a csillag külső rétegei nagyságrendileg 15 000 km/s körüli sebességgel hagyják el a csillagot, és gyorsan tágulnak. Nagy energiát visznek magukkal a táguló csillagmaradvány gázrészecskéi, mert nagy kezdősebességgel indultak el. Az OB-asszociáció anyagába és a környező csillagközi anyagba is beleütköznek és magukkal ragadják. A lökéshullámok elkezdik az anyagot kifelé söpörni. Mivel – csillagászati skálán mérve – gyors egymásutánban több szupernóva is erős lökéshullámot indít el kis belső, központi helyről, egy hatalmas méretű buborékot hoznak létre, amin belül az anyagot a lökéshullámok kifelé söprik.

Szuperbuborékok létrejötte. Az egyes galaxisokban megfigyelhető ilyen szuperbuborékokat a csillagkeletkezési hullámok szupernóvarobbanásai hozzák létre. Egyesek szerint sok-sok buborék egyesülése adja ki a szuperbuborékokat, mások reálisabbnak tűnő elképzelése szerint sok, egymáshoz közelebbi violens esemény együttes hatása hozza létre. (Vagyis pl. sok, egymáshoz térben és időben közeli szupernóva-robbanás.)

Amikor a központi fekete lyuk aktív, akkor egyszerre nagyon sok OB-asszociáció keletkezik, és a szuperbuborékok száma és mérete is megnőhet.

A Lokális Buborék. A Nap és vele együtt a Naprendszer is egy ilyen buborékban van. Itt a csillagközi anyag sűrűsége nagyságrenddel kisebb, mint másutt. Ezt a szuperbuborékot 1-es huroknak (Loop 1) hívják, és a legutóbbi 10-20 millió évben robbant szupernóvák hozták létre, mi pedig most haladunk keresztül rajta. A lenti kép mutatja néhány fényes, közeli csillag és a Nap helyzetét, hogy mi merre haladunk és a csillagközi anyag merre mozog.

A következő kép pedig az ezen belüli Lokális buborék határait mutatja – ezen a buborékon éppen keresztülhaladunk.

Egy buborék belsejében a hőmérséklet akár millió fokos is lehet, a falában pedig emissziós sugárzás okoz fénylést.

A csillagközi anyagban előforduló kisebb buborékok és a nagyobb szuperbuborékok nem is olyan ritkák a Tejútrendszerben sem. Oldalról nézve egy ilyen buborék vetületben látszik: kör, ív, hurok, vagy az anyageloszlástól függően gyűrűszerű alakot mutat. Az idősebb buborékok hűlnek, és kölcsön is hathatnak a galaxisok poranyagával, amit felmelegíthetnek. Ezeknek a gyűrűszerű alakzatoknak egyik fontos katalógusát Dr. Könyves Vera és munkatársai állították össze 2006-ban: 462 darab ilyen gyűrűszerű, távoli infravörösben látszó alakzatot találtak. Ezeket részben a nagytömegű csillagok erős csillagszele, részben a szupernóvarobbanások lökéshulláma, részben a Galaxisunkban kavargó anyag turbulens áramlása hozza létre és alakítja. (Forrás: https://arxiv.org/abs/astro-ph/0610465)

Más galaxisokban is találtak szuperbuborékokat. A fenti kép a kb. 160 ezer fényévre lévő Nagy Magellán-felhő-beli N44 jelű szuperbuborékról készült, aminek fala kékesben szépen világít. Az N44-et először Karl Henize vette fel egy katalógusba (1956-ban), átmérőjét 1000 fényévben határozták meg. A közepén lévő “lyuk” átmérője kb. 250 fényév. Kb. negyven csillagból álló asszociáció van a belsejében, közte egy csillagnak rendkívül erős a csillagszele, ami nagyon erősen hozzájárul a köd alakjának alakításához: a csillagszele összesöpri maga előtt a köd anyagát. A képen is látni, hogy a köd sűrűsége nagyon erősen változik: az asszociáció-beli szupernóvák lökéshulláma alakította ilyenre. A múltbéli szupernóvarobbanásokra a ködből érkező röntgensugárzás is bizonyíték. A köd a valóságban inkább rózsaszínes vöröses színű, amit a hidrogén, és az egyszeresen, illetve kétszeresen ionizált oxigén emissziós sugárzása okoz. A mellékelt kép azonban a déli féltekén található 8 méteres Gemini-dél teleszkóppal készült, három nagyon specifikus szűrővel: H-alfa 656 nm-en, [OIII] (kétszeresen ionizált oxigén egyik hullámhossza) és [SII] (egyszeresen ionizált kén egyik vonala), ezt színezték meg sorra lilával, ciánkékkel és naranccsal, ezért lett ilyen színű a kép.

A szerző köszönetet mond Dr. Könyves Verának (Jeremiah Horrocks Institute, University of Lancashire) a cikk első változatának kommentálásáért. Ha valami hiba vagy téves fogalmazás benne maradt mégis, az csakis a szerző hibája.

A Vega Csillagászati Egyesület háromfordulós csillagászati vetélkedőt hirdet kvíz formájában. Két korosztályban lehet indulni:

I. Ifjúsági kategória (2000. január 1. – 2005. december 31. között születettek).

II. Felnőtt kategória (1999. december 31-e előtt születettek).

Az I. (ifjúsági kategória) korosztály legjobb lány-, illetve fiúversenyzői ingyenesen jöhetnek a Vega Csillagászati Egyesület 2019. évi nyári táborába, amelyre 2019. július 26. – augusztus 1. között kerül sor Őrimagyarósdon (Őrség, Vas megye). A legjobb felnőtt versenyző (II. kategória)  pedig egy darab könyvet kap ajándékba, Csizmadia Ákos: Izsák Imre csillagászról írt életrajzát. A könyvet majd postán küldjük el.

Amennyiben az ifjúsági kategóriában a legsikeresebben szereplők nem tudnak jönni és ezt legkésőbb 2019. júl. 15-ig jelzik, úgy a lehetőséget a következő helyezett kapja meg az ingyenes tábori részvételre.

A vetélkedőn indulhat az is, aki tagja a VCSE-nek, és az is, aki nem tagja még.

TOVÁBB A FELADATOKHOZ! (A feladatok betöltése akár egy percet is igénybe vehet!)

Kieg. feb. 21-én: felnőttek esetén a legmagasabb iskolai végzettséget adó iskola nevét és osztályát, vagy kamu iskolát és osztályt is meg lehet adni a kitöltéshez. Ifjúsági versenyzők esetén azonban itt is valós adatokat kérünk!

Az I. forduló beküldési határideje: 2019. március 9. 12:00 óra KöZEI (UT+1 óra).

Szabályok

1. A vetélkedő három internetes fordulóból áll. A három forduló összesített pontszáma adja majd meg a végeredményt, függetlenül attól, hogy ki hány fordulóban vett részt. Az egyes fordulókban ugyanannyi pont szerezhető.

2. Bármilyen segédeszköz használható – kivéve a bírálóbizottság és a technikai megvalósításban közreműködő személyek segítségét.

3. Határidőn túli beküldést nem veszünk figyelembe. Egy személy csak egyszer küldheti be a megoldásokat.

4. Az ifjúsági korosztályos vetélkedőre nem kerül sor, ha legalább nyolc versenyző nem indul el rajta. Amennyiben valamelyik nemből háromnál kevesebben indulnak az első fordulóban, úgy a fiú-lány kategóriákat összevonjuk, és az 1. és a 2. helyezett jöhet ingyenesen az idei táborba. A versenyzők számáról és e pont életbelépéséről az első forduló után adunk tájékoztatást.

5. A megoldásokat a VCSE elnökségi tagjaiból alakított bizottság bírálja el:

Bánfalvi Péter amatőrcsillagász, matematika-fizika-számítástechnika szakos tanár

Dr. Csizmadia Szilárd, csillagász

Jandó Attila, villamosmérnök, amatőrcsillagász

Zelkó Zoltán, csillagász

6. A bírálóbizottság döntései ellen fellebbezésnek nincs helye, kérelmeket nem veszünk figyelembe, panaszoknak nem adunk helyt.

7. Nem pontosan megadott személyes adatok vagy nem sportszerű, etikátlan viselkedés esetén a versenyző kizárható.

8. Nem vehet részt a versenyen az, aki nem felel meg a feltételeknek, vagy valótlan adatokat ad meg, vagy nem tölti ki az adatlapot.

9. A vetélkedő ifjúsági kategóriájában olyanok indulhatnak, akik 2000. január 1. – 2005. december 31. között születtek. A felnőtt kategóriában az 1999. december 31-e előtt születettek indulhatnak (kivéve: a bírálóbizottság, a technikai lebonyolításért felelős egyesületi tagtárs, és a tábori szervezőbizottság tagjai).

A versenyzők bármilyen állampolgárságúak lehetnek, és bárhol lakhatnak a világban, de a feladatmegoldáshoz a magyar nyelvet megfelelő szinten bírniuk kell.

10. Itt nem szabályozott kérdésekben a bírálóbizottság dönt.

11. A tábori részvétel csak a tábori részvételi díj átvállalását foglalja magában. Nem tartalmazza a tábor helyszínére és az onnét történő hazautazás költségeit, és a táborba hozandó felszerelés stb. költségeit sem.

A fordulókban szerezhető maximális pontszámok:

I. forduló: 40 pont. (Feladatok kitűzésének időpontja: 2019. feb. 19. Beadási határidő: 2019. már. 9. 12:00 KöZEI).

II. forduló: 40 pont

III. forduló: 40 pont.

Technikai megvalósítás: Fehér Norbert (VCSE).

2019. január 8-án a nap csillagászati képe, vagy inkább videója volt a HESS távcsőrendszert bemutató rövidke kis film.

Az égboltot távcsöveink nem csak a látható fény tartományában vizsgálják. Mára már az elektromágneses spektrum minden részén: gamma- és röntgentartományban, láthatóban, ultraibolyában és infravörösben, rádió-hullámhosszakon ugyanúgy figyelik a csillagászok kisebb-nagyobb megszakításokkal (mostanában pl. nincsen ultraibolya műholdunk), mint ahogy neutrínókat és gravitációs hullámokat is detektálunk az űrből.

A HESS: High-Energy Stereoscopic System Observatory (Nagyenergiájú Sztereoszkópikus-rendszerű Obszervatórium) 12-28 méteres távcsövekből áll, de nem a fényt fogja fel. Ehelyett a légkörünket a világűrből eltaláló részecskék keltette Cserenkov-sugárzásra vadászik.  A HESS teraelektronvolt nagyságrendű részecskék keltette ilyen sugárzásokra érzékeny. A távcsőrendszer Namíbiában található.

Ilyen Cserenkov-sugárzást olyan kozmikus események kelthetnek, mint pl. szupernóva-robbanások, szupernóva-maradványok, fekete lyukak körüli akkréciós korongok (akár más galaxisok centrális fekete lyukai) stb.

A videón a különleges távcsövek mögött feltűnik a Tejút, a két Magellán felhő, csillagvárosunk tagjai hangulatos zene kíséretében.

 

Amatőrcsillagászoknak, csillagászoknak, a csillagászat barátainak…

Kiadja a Vega Csillagászati Egyesület (2019)
Honlap: www.vcse.hu
E-mail: vcse@vcse.hu

Összeállította: Csizmadia Szilárd
Feltöltve: 2019. január 2.

Az “Almanach a 2019. évre” alapvető csillagászati adatokat tartalmaz a megjelölt évre nézve – de nem teljes körű. Egyes csillagászati adatokat csak más könyvekben vagy honlapokon lehet megtalálni, itt nem.

Az Almanach-ot nem egyszerre töltjük fel, hanem az egyes részek elkészülte és ellenőrzése után.

1. Felhasználási feltételek
2. Magyarázatok
3. Bevezető:

           3.1 Merkúr-átvonulás 2019. nov. 11-én

3.2 Napfogyatkozások 2019-ben

3.3 Holdfogyatkozások 2019-ben

4. A csillagászati évszakok kezdetei 2019-ben

5. A Hold földközelségei és földtávolságai 2019-ben

6. Holdfázisok

FELHASZNÁLÁSI FELTÉTELEK

A jelen Almanach-ban, a VEGA c. egyesületi körlevelünkben és amatőrcsillagászati tájékoztatónkban, vagy a honlapunkon megjelent bármely anyag, információ és adat a forrás (VCSE és a www.vcse.hu) megjelölésével, a megjelenés helyéről és céljáról szóló rövid tájékoztató levél részünkre történő megküldése mellett szabadon átvehető a következő célokra: nonprofit jellegű tájékoztatás, ismeretterjesztés, oktatás és tudomány-népszerűsítés. A forrás (VCSE és a www.vcse.hu honlap) megjelölése nélkül az itt közölt anyagok, információk és adatok nem vehetők át és nem másodközölhetők. Ugyanezek az anyagok, adatok és információk, értékesítésre, haszonszerzésre nem vehetők át és nem másodközölhetőek, és ez ellen minden eszközzel fellépünk!

Az Almanach más honlapon teljes egészében nem közölhető, teljes egészében nem vehető át. Egyidejűleg legfeljebb az almanach összes karakterszámának 15%-a vehető át, illetve ismételhető meg más honlapon, vagy nyomtatott formában. A forrás megjelölése (VCSE és www.vcse.hu) ebben az esetben is szükséges.

Örömmel vesszük, ha más honlapról az Almanachra linket tesz valaki. Külön kérés esetén a linkcsere garantált.

Kellemes olvasást kívánunk!

 

MAGYARÁZAT:

Az almanach internetes közlésének célja, hogy egy, a neten bárhonnét elérhető, gyors információforrást nyújtson az amatőrcsillagászoknak és a csillagászat barátainak. Önmagában nem helyettesíti a sokkal részletesebb magyar nyelvű vagy külföldi csillagászati évkönyveket.

Az almanachban egyaránt használunk világidőt (UT) és Közép-Európai Időt (KözEI). A KözEI megegyezik a Magyarországon használt téli időszámítással. Az UT, a KözEI és a mi nyári időszámításunk (NYISZ) közötti összefüggések a következők:

KözEI = UT + 1 óra

NYISZ = UT + 2 óra

NYISZ = KözEI + 1 óra

A könyvben az UT-ben megadott időpontokat külön jelezzük. A külön nem jelölt időpontok KözEI-ben vannak. A nyári időszámítás – amennyiben még érvényben lesz – 2019-ben várhatóan 2019. március 31-től október 27-ig tart. Nyári időszámítás alatt az UT-ben közölt időpontokhoz 2, a KözEI-ben közölt időpontokhoz 1 órát kell hozzáadni, hogy a polgári időszámítás szerint kapjuk meg az időpontokat.

Az almanachban közölt egyéb információk jelentése megegyezik a többi csillagászati évkönyvbeli információk jelentésével.

 Mivel az almanach kiszámításához régebbi adatokat és egyszerűbb algoritmusokat használtunk, más táblázatokhoz képest 1-2 perc eltérés előfordulhat az I-VIII. fejezetekben.

 

BEVEZETŐ

2019 legfontosabb csillagászati eseményei:

Merkúr-átvonulás 2019. november 11-én: ezen a Napon a Merkúr korongja átvonul a Nap korongja előtt. A jelenség hétfőre esik. Legutóbb 2016-ban volt, legközelebb 2032-ben lesz ilyen jelenség látható a Földről. A jelenség ritka, a 20. században 14 alkalommal, a 21-ikben szintén 14, a 22-ikben 13 alkalommal következett/következik be. KöZEI szerint 13:35-kor lép be a Merkúr bolygó a Nap korongja elé, 16:20-kor lesz a tranzit közepe, és 19:04-kor ér véget. Zalaegerszegről nézve aznap a Nap 16:23-kor fog lenyugodni, vagyis a jelenség első fele látható tőlünk nézve.

Napfogyatkozások 2019. január 6-án, július 2-án, december 26-án. A jan. 6-i 71,5%-os nagyságú részleges napfogyatkozás Európából nem megfigyelhető, Kínából, Kelet-Szibériából, Japánból, kis részben Nyugat-Alaszkából és a Csendes-óceán északi részéről látható.

A júl. 2-i teljes napfogyatkozás sem látható Európából, mert a Csendes-óceán déli részein és Dél-Amerika délebbi részein húzódik a teljesség sávja.

A karácsony másnapjára eső dec. 26-i gyűrűs napfogyatkozás sem látható Európából. A teljesség sávja az Arab-félszigeten kezdődik, az Indiai-óceánon húzódik, érinti Dél-Indiát, Indonéziát stb.

Holdfogyatkozások 2019. január 21-én, július 16/17-én. A jan. 21-i teljes holdfogyatkozás a hajnali órákban következik be, Európából, és így Magyarországról is nagyobbrészt jól látható, bár a legeslegutolsó pillanatokról lemaradunk a holdnyugta miatt. A jelenség hétfő hajnalra esik. A fogyatkozás főbb időadatai:

A Hold felkel Zalaegerszegen: jan. 20. 17:04 KöZEI

Félárnyékos fogyatkozás kezdete: jan. 21. 3:35 KöZEI

Részleges fogyatkozás kezdete: 4:34 KöZEI

Teljes fogyatkozás kezdete: 5:41 KöZEI

Fogyatkozás közepe: 6:12 KöZEI

Teljes fogyatkozás vége: 6:44 KöZEI

A Hold lenyugszik Zalaegerszegről nézve: 7:40 KöZEI (az ország középső részein kb. negyedórával, keleti részein kb. fél órával korábban!)

Részleges fogyatkozás vége: 7:51 KöZEI

Félárnyékos fogyatkozás vége: 8:50 KöZEI

A július 16/17-i részleges holdfogyatkozás 66%-os részleges holdfogyatkozás lesz egy keddről szerdára virradó éjjel. Európából megfigyelhető. A félárnyékos fogyatkozás kezdete csak az ország legnyugatibb részeiről látszik, de a fogyatkozásnak ez a része gyakorlatilag észrevehetetlen lesz; a többi része látszik derült idő esetén az egész Kárpát-medencéből. A jelenség főbb időadatai a következők:

A Hold felkel Zalaegerszegen: júl. 16. 20:35 NYISZ (az ország középső részein kb. negyedórával, keleti részein kb. fél órával korábban!)

Félárnyékos fogyatkozás kezdete: 20:42 NYISZ

Részleges fogyatkozás kezdete: 22:01 NYISZ

Fogyatkozás közepe: 23:31 NYISZ

Részleges fogyatkozás vége: júl. 17. 01:00 NYISZ

Félárnyékos fogyatkozás vége: 2:20 NYISZ

A Hold lenyugszik Zalaegerszegről nézve: 4:35 NYISZ

A Hold a földárnyék déli részét érinti, ezért a Hold észak felé lévő oldala fordul majd az árnyékba (delelés idején ez a látható felső része lesz szabad szemmel).

A Hold elfedi a Szaturnuszt feb. 2-án. 2019 folyamán a Hold többször is elfedi a Szaturnuszt, e jelenségek némelyike Európából is látható.

2019. február 2. Az alig 6%-os, fogyóban lévő Hold elfedi a Szaturnuszt. Zalaegerszegről nézve a Hold 5:45-kor kel. Belépés a fényes oldalon 06:51:24 KöZEI-kor, kilépés a Hold sötét oldalán 07:38:23 KöZEI-kor.  A jelenség mintegy 5-6° horizont feletti magasságban zajlik le Nyugat-Magyarországról nézve. A Nap 7:17 KöZEI-kor kel. Az egész jelenség világos égen, nagyon nehéz megfigyelési körülmények között zajlik le, észlelése kihívásnak számít.

A március 1-i, március 29-i, április 25-i, május 22-i, jún. 19-i, júl. 16-i, augusztus 12-i, szept. 8-i, okt. 5-i, nov. 2-i, nov. 29-i Szaturnusz-fedés tőlünk nem megfigyelhető, de többségük Ausztráliából igen.

Továbbá tőlünk nem látható, ahogy a Hold elfedi a Vénuszt jan. 31-én és dec. 29-én, a Marsot júl. 4-én.

A Hold elfedi a Jupitert nov. 28-án. 2019-ben csak egy Jupiter-fedésre kerül sor, de az Európából látható lesz – csak éppen a jelenség a nappali égbolton megy majd végbe, 4%-os holdfázis mellett, a Naptól mintegy 20° szögtávolságra. Bár elméletben GoTo-s távcsővel a Jupitert a nappali égen is meg lehetne találni, a jelenség megfigyelhetősége rendkívül nehéz, rossz.

A Hold kisbolygókat és csillagokat is elfed 2019 folyamán. Aki a fentebb említett bolygófedésekről, valamint kisbolygók Hold általi fedéseiről részletesebben szeretne tájékozódni, annak javasoljuk, menjen el erre az oldalra.

A csillagászati évszakok kezdetei 2019-ben:

Tavaszi napéjegyenlőség, cs. tavasz kezdete:   március 20. 22:58:15 (óra:perc:másodperc) KöZEI
Nyári napforduló, cs. nyár kezdete:                   június. 21. 17:54:57 NYISZ
Őszi napéjegyenlőség, cs. ősz kezdete:              szeptember 23. 9:50:39 NYISZ
Téli napforduló, cs. tél kezdete:                          december 22. 5:19:33 KöZEI

A Hold földközelségei és földtávolságai:

Magyarázat: hónap, nap, a földközelség/földtávolság időpontja óra:percben (KöZEI), a Hold távolsága km-ben / Hold aktuális látszó átmérője ívpercben (‘).

Hold földtávolban: 1. 9. 05: 28      406114.1 km / 29.4′
Hold földközelben: 1. 21. 20: 58     357343.6 km / 33.4′

Hold földtávolban: 2. 5. 10: 28       406551.5 km / 29.4′
Hold földközelben: 2. 19. 09: 59     356762.8 km / 33.5′

Hold földtávolban: 3. 4. 12: 27        406387.9 km / 29.4′
Hold földközelben: 3. 19. 20: 45     359378.0 km / 33.3′

Hold földtávolban: 4. 1. 01: 13          405575.1 km / 29.5′
Hold földközelben: 4. 16. 23: 06      364207.1 km / 32.8′
Hold földtávolban: 4. 28. 19: 17       404580.0 km / 29.5′

Hold földközelben: 5. 13. 22: 51     369012.6 km / 32.4′
Hold földtávolban: 5. 26. 14: 24     404137.4 km / 29.6′

Hold földközelben: 6. 8. 00: 14       368505.2 km / 32.4′
Hold földtávolban: 6. 23. 08: 50     404548.5 km / 29.5′

Hold földközelben: 7. 5. 06: 00     363726.2 km / 32.9′
Hold földtávolban: 7. 21. 01: 02     405478.7 km / 29.5′

Hold földközelben: 8. 2. 08: 12       359399.8 km / 33.2′
Hold földtávolban: 8. 17. 11: 52      406241.7 km / 29.4′
Hold földközelben: 8. 30. 16: 53     357179.3 km / 33.5′

Hold földtávolban: 9. 13. 14: 33     406377.0 km / 29.4′
Hold földközelben: 9. 28. 03: 23    357804.9 km / 33.4′

Hold földtávolban: 10. 10. 19: 28    405901.1 km / 29.4′
Hold földközelben: 10. 26. 11: 38    361315.4 km / 33.1′

Hold földtávolban: 11. 07. 09: 36    405060.6 km / 29.5′
Hold földközelben: 11. 23. 08: 37    366721.1 km / 32.6′

Hold földtávolban: 12. 05. 05: 10    404445.1 km / 29.5′
Hold földközelben: 12. 18. 21: 31     370259.1 km / 32.3′

Holdfázisok 2019-ben. A holdfázisok időpontjait KöZEI-ben adjuk meg minden esetben – más táblázatokhoz képest kerekítések és eltérő efemeriszek miatt 1-2 perc eltérés lehetséges.

2019. 01. 06. 2:28: Újhold.
2019. 01. 14. 7:45: Első negyed.
2019. 01. 21. 6:16: Telehold.
2019. 01. 27. 22:10: Utolsó negyed.

2019. 02. 04. 22:03: Újhold.
2019. 02. 12. 23:26: Első negyed.
2019. 02. 19. 16:53: Telehold.
2019. 02. 26. 12:27: Utolsó negyed.

2019. 03. 06. 17:03: Újhold.
2019. 03. 14. 11:26: Első negyed.
2019. 03. 21. 02:42:  Telehold.
2019. 03. 28. 05:09: Utolsó negyed.

2019. 04. 5. 09:50: Újhold.
2019. 04. 12. 20:05: Első negyed.
2019. 04. 19. 12:12: Telehold.
2019. 04. 26. 23:18: Utolsó negyed.

2019. 05. 04. 23:45: Újhold.
2019. 05. 12. 02:12: Első negyed.
2019. 05. 18. 22:11: Telehold.
2019. 05. 26. 17:33: Utolsó negyed.

2019. 06. 03. 11:01: Újhold.
2019. 06. 10. 06:59: Első negyed.
2019. 06. 17. 09:30: Telehold.
2019. 06. 25. 10:46: Utolsó negyed.

2019. 07. 02. 20:16: Újhold.
2019. 07. 09. 11:54: Első negyed.
2019. 07. 16. 22:38: Telehold.
2019. 07. 25. 02:18: Utolsó negyed.

2019. 08. 01. 04:12: Újhold.
2019. 08. 07. 18:30: Első negyed.
2019. 08. 15. 13:29: Telehold.
2019. 08. 23. 15:56: Utolsó negyed.
2019. 08. 30. 11:37: Újhold.

2019. 09. 06. 04:10: Első negyed.
2019. 09. 14. 05:32: Telehold.
2019. 09. 22. 03:40: Utolsó negyed.
2019. 09. 28. 19:26 : Újhold.

2019. 10. 05 17:47: Első negyed.
2019. 10. 13 22:07: Telehold.
2019. 10. 21 13:39: Utolsó negyed.
2019. 10. 28 04:38: Újhold.

2019. 11. 4 11:23: Első negyed.
2019. 11. 12 14:34: Telehold.
2019. 11. 19 22:10: Utolsó negyed.
2019. 11. 26 16:05: Újhold.

2019. 12. 4 07:58: Első negyed.
2019. 12. 12 06:12: Telehold.
2019. 12. 19 05:57: Utolsó negyed.
2019. 12. 26 06:13: Újhold.

A Hold Földtől mért távolságát Hipparkhosz görög csillagász is meghatározta Kr. e. 129-ben egy napfogyatkozás segítségével. A Nap-Föld távolságot már ismerte Arisztarkhosz eljárása nyomán. A nagy előd a Hellészpontosznál az akkor bekövetkezett napfogyatkozást teljesnek ismerte, beszámolók szerint viszont Alexandriában csak a Nap 4/5-öd részét takarta ki a Hold.

VCSE - Hipparkhosz holdtávolság-mérésének elve.
VCSE – Hipparkhosz holdtávolság-mérésének elve.

Hipparkhosz Hellészpontosz (H) és Alexandria (A) távolságát közelítően ismerhette, és az ókori földrajztudományból tudhatta, hogy az Alexandria-Hellészpontosz AH-távolság a földgömbön kb. hány földrajzi foknak felel meg. A fenti ábrát megszerkesztve lemérte a Föld-Hold távolságot, amire azt kapta, hogy az a Föld sugarának kb. 60-szorosa.

A későbbiekben nagyon sokan más módokon is megmérték a Hold távolságát. Manapság a legpontosabb eredményt a lézeres mérés adja. Az Apollo-expedíciók számos macskaszem-tükröt hagytak a holdfelszínen, amiket a Földről lézerrel megcéloznak, és felfogják a visszavert sugár érkezési idejét. A kibocsátás és a visszaverődés különbségének idejét a fénysebességgel szorozva kapjuk a Hold távolságát (amit még át kell számítani a Föld és a Hold centrumainak távolságára), és ezt manapság már 2-3 cm-es pontossággal tudjuk kivitelezni.

A Hold távolságát Newton gravitációelméletéből számítjuk, amely az árapályerők és a relativisztikus korrekciók figyelembevétele után a megfigyelésekkel összhangban van.

A Hold mozgása első közelítésben egy ellipszis, amelynek fókuszpontjában áll a Föld, és ami körül a Hold változó sebességgel, átlagosan e=0,00549006 excentricitású pályán 27,322 nap alatt megy körbe (a csillagokhoz képest mérve a keringésidőt).

Elsősorban a Nap, a Föld nem szimmetrikus tömegeloszlása, és a nagybolygók okozta perturbációk miatt azonban ennek az ellipszisnek a helyzete, a nagytengely iránya és a mérete is folyamatosan változik, ami miatt a Hold távolsága a Földtől viszonylag komplikált módon váltakozik. Az alábbi ábra bemutatja, hogyan alakul a Hold földtávolsága egy három éves időszak alatt:

VCSE - A Hold Földtől mért távolságának változása napról-napra 2019. január 1-e után három éven keresztül. Vízszintes tengelyen a napok száma a fenti dátum után, függőlegesen a Hold középpontjának távolsága a Föld centrumától 1000 km-ben mérve (vagyis pl. 380 az ábrán 380 ezer km-t jelent.) - Csizmadia Szilárd
VCSE – A Hold Földtől mért távolságának változása napról-napra 2019. január 1-e után három éven keresztül. Vízszintes tengelyen a napok száma a fenti dátum után, függőlegesen a Hold középpontjának távolsága a Föld centrumától 1000 km-ben mérve (vagyis pl. 380 az ábrán 380 ezer km-t jelent.) – Csizmadia Szilárd

Az ábrán a Hold egy keringési ciklusa nagyon szépen látszik: a holdpálya excentricitása miatt földközeltől (perigeum) földtávolig (apogeum) változik a Hold távolsága, mégpedig a megszokott 27,3 napos periódusidővel. Ami nagyon feltűnik ezen az ábrán még, az az, hogy a perigeumok és apogeumok (legkisebb és legnagyobb holdtávolságok egy keringési ciklus alatt) szinte periodikusan váltakoznak. A perigeumok távolsága sokkal inkább váltakozik, mint az apogeumoké. Az apogeumok hozzávetőleg 404 ezer és 406,5 ezer km közötti földtávolságban következnek be, vagyis értékük  0,6%-ot ingadozik kb. fél éves periódussal.

A perigeumok kb. 354 ezer és 380 ezer km távolságokban következnek be, vagyis a földközelség értékében sokkal nagyobb a változás: kb. 7%. Ez már szemmel is észrevehető, mert a telehold méretében is kb. ugyanekkora változást okoz és az emberi szem ezt már képes érzékelni. (Ha valaki emlékszik, mekkora volt a Hold látszó mérete egy hónappal azelőtt… És közben a holdfázis is változik, mert az nem 27,3, hanem 29,5 napos periódusidővel bír.) A perigeumtávolságok ingadozásának periódusideje az apogeumokéval megegyező az ábrára tekintve.

Ha valaki alaposabban is megnézi az ábrát, azt is láthatja, hogy a perigeumok és az apogeumok egymással azonos ütemben váltakoznak, azaz mintha a holdpálya ellipszise pulzálna. Amikor az ellipszis ellaposodik, akkor a perigeum közelebb, az apogeum távolabb következik be, vagyis a holdpálya nagytengelye nagyobb; amikor az ellipszis kikerekedik, akkor az apogeum közelebb, a perigeum távolabb kerül, és a holdpálya mérete kisebb… Mindezt szép periodikussággal cselekszi a Hold, úgy, ahogy elszenvedi a Naptól, a többi bolygótól és az árapályerőktől származó perturbációkat.

A holdpálya excentricitásának fenti értéke csak az átlagexcentricitás, a számítások szerint az excentricitás 0,044 és 0,067 szélső határok között ingadozik. A Hold pályahajlása is ingadozik mintegy 21 ívpercet. A Hold perigeuma és vele az egész pályaellipszise 8,85 év alatt körbefordul a Föld körül, elsősorban a Nap hatására (kis omega-pályelem), miközben a felszálló csomó (nagy omega-pályaelem), vagyis ahol a Hold délről észak felé áthalad az ekliptikán, 18,6 év alatt jár körbe (ennyi idő alatt tesz meg 360 fokot) – az utóbbi az oka egyébként annak, hogy a hold- és napfogyatkozások 18 év és pár nap alatt ismétlődnek.

A Hold mozgásában több egyenlőtlenség is mutatkozik:

Elliptikus tagok. Végtelen számú elliptikus jellegű perturbáció van, amelyek periódusa 27,3 nap, illetve ennek fele, harmada, negyede, ötöde stb. Ezek közül a fő tagokat még Hipparkhosz vette észre, és ennek nyomán egymáson gördülő körök segítségével próbálta magyarázni a Hold mozgását. Vagyis, ilyen módon közelítette az ellipszispályát.

Evekció. Ptolemaiosz fedezte fel.  Az ellipszispályán való mozgás módján előrejelzetthez képest a Hold 1° 20′-cel is előre- vagy hátrasiethet első negyedkor és utolsó negyedkor az újholdhoz és a teleholdbeli sebességéhez képest. Ennek oka, hogy amikor a Hold a Földnek Nap felőli oldalán van, a Nap erősebben vonzza, mint amikor a Hold a Napból nézve a Földdel átellenes oldalon van – hiszen akkor távolabb van a Naptól, és a gravitáció a távolság négyzetével fordítottan arányosan gyengül. Periódusa 31,8 nap. (Ezt a tagot nem lehet elliptikus tag módjára körön gördülő körökkel magyarázni, mert nemcsak a Hold Földhöz képesti, de Naphoz képesti helyzetétől is függ.)

Aequatio. A Föld januárban napközelben, júliusban naptávolban van, a különbség kb. 5%-ot tesz ki távolságában. Emiatt januárban a Nap erősebben, júliusban gyengébben vonzza a Földet is, a Holdat is, így perturbációs ereje az év folyamán változik. Emiatt télen a Hold 27 nap és 12-13 óra alatt járja körbe a Földet, nyáron viszont csak 27 nap 1 óra alatt. Egymástól függetlenül fedezték fel ezt a jelenséget Tycho de Brahe dán és Abulfeda arab csillagászok a 16. században. Ez éppen az a kb. féléves változás, amit fentebb a diagramokról leolvastunk. Évi egyenetlenségnek és “évi egyenletnek” is nevezik, periódusa egy év.

Variatio. Szintén Tycho de Brahe fedezte fel a 16. században, a Hold pozíciójában a sima ellipszispályához képest fél foknyi változást tud okozni. Abból származik, hogy amikor a Hold nem a Napot és a Földet összekötő egyenesen áll, hanem ahhoz képest szögben, a Napból származó gravitációs erő szöget zár be a Földre kifejtett gravitációjával. Érdekes, hogy a görögök ezt nem fedezték fel – Érdi Bálint azzal magyarázza ezt, hogy a variatio értéke újholdkor és teleholdkor nulla, márpedig a görögök éppen a fogyatkozásokból szerezték ismereteiket leginkább a Hold mozgását illetően – márpedig napfogyatkozáskor újhold, holdfogyatkozáskor telehold van.

A Hold járásában mutatkozó minden kis periodikus változást nagyon nehéz összegezni. Érdi Bálint Égimechanika c., a Nemzeti Tankönyvkiadónál 1996-ban kiadott egyetemi tankönyve idézi Delaunay francia csillagász 19. századi számításait. Eszerint a Hold ekliptikai hosszúsága kiszámításához ő 479 tagot, az ekliptikai szélesség kiszámításához 436 tagot vett figyelembe; a Hold parallaxisának (ami a távolságával egyenértékű) előrejelzéséhez elég volt 100, különféle periódusidejű tag is.

Az amatőrcsillagásznak is rendkívül fontos a holdtávolság ismerete. Amikor a Hold közelebb van, távcsövével picit kisebb felszíni részleteket is meg tud pillantani, mint amikor távol van. De egyben a gravitáció működésére is szép példát mutatnak a holdtávolságok és a Hold pályaalakjának szép, ismétlődő változásai.