Fehér törpecsillagok kialakulása

A csillagok életük jelentős részét azzal töltik, hogy magjukban fúziós folyamatok során hidrogént alakítanak héliummá. Ez utóbbi később újabb fúzió révén szénné és oxigénné alakul. Amennyiben a csillag tömege nem haladta meg Napunk tömegének nyolcszorosát, a fúziós folyamatok itt befejeződnek. Az ilyen csillagok életük végén ledobják külső rétegeiket. A folyamatosan táguló köpenyt planetáris ködnek nevezzük. Közepén egy sűrű, szénből és oxigénből álló csillagmag marad hátra, mely zsugorodni kezd, hőmérséklete pedig gyorsan emelkedik. Benne az atomok elveszítik elektronjaikat (ionizálódnak), az atommagok így rendkívül kis térrészre tudnak tömörülni. A gravitációnak már csak az elektronok degenerációs nyomása képes ellentartani, ennek segítségével kerül a mag újra egyensúlyba. Az ily módon kialakult csillagmaradványokat fehér törpéknek nevezzük.

A fehér törpék sugara a Földével összemérhető, átlagos tömegük 0,6-szerese a Napénak. Energiatermelés már nem zajlik bennük, így kialakulásuktól fogva folyamatosan hűlnek. A hűlés addig tart, amíg a csillag egyensúlyba nem kerül a kozmikus háttérsugárzás mindenkori hőmérsékletével. Ekkortól az objektumot fekete törpének nevezzük. A hűlési folyamat azonban hosszabb időt vesz igénybe, mint az Univerzum jelenlegi kora, így ma még nem figyelhetünk meg fekete törpéket.

Fehér törpék kialakulása
A kis tömegű csillagok életútja. Az életük végeztével kialakuló csillagmaradványt fehér törpének nevezzük. Forrás: Encyclopedia Britannica

Bolygók fehér törpék körül?!

A legtöbb érv amellett szólna, hogy fehér törpék körül nem találhatunk bolygókat stabil pályán. Amikor ugyanis egy kis tömegű csillag élete végéhez közeledve vörös óriássá fúvódik fel, elnyelheti a körülötte szűk pályán – kb. három csillagászati egységen (CSE) belül – keringő bolygókat. Az a kérdés továbbra is megválaszolatlan, hogy bolygók túlélhetnek-e a csillag híg köpenyében keringve.

Azonban nem csak a közel keringő bolygók számíthatnak sanyarú sorsra csillaguk életének végeztével. Amikor ugyanis a csillag lefújja-ledobja köpenyének jelentős részét, a tömegvesztés hatására a körülötte keringő bolygók pályája jelentős mértékben megváltozhat. Kepler III. törvényének megfelelően ez első sorban a pálya tágulását jelenti, ami sok esetben ahhoz vezet, hogy a bolygók elhagyják a rendszert. Ezen felül az esetlegesen túlélő bolygók a csillaguk fehér törpévé válása után is megzavarhatják egymás pályáit, így egymásba ütközhetnek, elhagyhatják a rendszert, vagy a csillagba eshetnek. Összességében tehát valószínűtlen, hogy egy fehér törpétől tíz CSE (Csillagászati Egység) távolságon belül keringő bolygót fedezzünk fel (összehasonlításképp: a Szaturnusz 9,5 CSE-re kering a Naptól).

És mégis, mára nem egy fehér törpe körül fedeztek fel bolygókat a kutatók! Az első, témához kapcsolódó felfedezés Stephen E. Thorsett és kutatócsapatának érdeme. Az elsőként 1993-ban észlelt bolygó azonban egy pulzár-fehér törpe rendszer (PSR B1620-26 AB) közös tömegközéppontja körül kering 23 CSE fél nagytengelyű pályán. Ez a rendszer ráadásul az M4 gömbhalmazban található, így fejlődése több szempontból is merőben különbözik a továbbiakban bemutatandó, magányos fehér törpék körül keringő bolygókétól.

Meglepetésként érte a tudományos közösséget Andrew Vanderburg és munkatársainak 2015-ös felfedezése, a WD 1856+534 fehér törpe esetében a TESS űrtávcső mérési adataiban bolygófedésre utaló jeleket találtak, amint a planéta periodikusan elhaladt a csillaga előtt. A WD 1856+534 rendszerről készült későbbi vizsgálatok során kiderült, hogy a felfedezett bolygó nincs egyedül: a rendszerben további öt (!) törpebolygó kering. Az égitestek körpályán keringenek, csillagukat csupán 4,5-4,9 órás periódussal kerülik meg, így pályájuk fél nagytengelye 0,005-0,0056 CSE-nek adódik. Az objektumok mind kis méretűek, átmérőjük 1-100 km közötti. (A Naprendszerben az ilyen méretű bolygók szinte kisbolygónak számítanának- A szerk.)

Ahogy az lenni szokott, az első felfedezést hamar sok másik követte. A WD 1856+534 rendszer feltérképezése óta további 11 bolygót fedeztek fel a kutatók fehér törpecsillagok körül. Közülük hat kis mérete és nagy sűrűsége alapján csakis kőzetbolygó lehet. Sőt, egyikük sűrűsége olyan hatalmas, hogy csakis egy kőzetbolygó vasmagjáról lehet szó. A felfedezett planéták mindegyike a fehér törpéhez közel kering, pályájuk fél nagytengelye csupán 0,003-0,36 CSE. A 11 felfedezésben benne foglaltatik továbbá egy jégóriás és négy gázóriás bolygó is. Egyikük igen távol kering a csillagtól (2500 CSE-re), kettő közepes (11, illetve 35 CSE), kettő pedig szűk pályán kering (0,02, illetve 0,07 CSE). Tömegük a Jupiter tömegének 2,5-14-szerese.

Adódik tehát a legfontosabb kérdés: hogyan kerülnek ide ezek a bolygók? Azon óriásbolygók esetében, melyek jelentős távolságra keringenek csillaguktól (11 CSE és felette), a pálya helyzete könnyedén magyarázható a csillag óriásági tömegvesztése során fellépő pályatágulás segítségével. Azonban a többi óriásbolygó, illetve a kőzetbolygók mindegyike rendkívül közel kering a csillagához.

Fehér törpecsillag körül keringő széteső bolygó
Egy fehér törpe körül keringő bolygó, mely éppen szétesőben van. Az elvesztett szilárd anyag a nagy hőmérséklet hatására szublimál, így por és gáz együtt alkot egy üstökösszerű csóvát.

Széteső bolygók, fémszennyezett csillagok

A kis fél nagytengelyű bolygók mind az úgynevezett Roche-határon belül keringenek: ilyen közel a csillaghoz a saját gravitációs erejük nem tud ellentartani a csillag által kifejtett árapályerőknek, és ezért feldarabolódnak. Valószínű tehát, hogy ezeket a planétákat szétesés közben figyelhetjük meg. Ezt alátámasztja az is, hogy amikor a bolygók elhaladnak csillaguk előtt, a csillag fényességének megváltozása aszimmetrikus. Utóbbi ugyanis egyértelmű jele annak, hogy a bolygókról anyag távozik el, vagyis egy porból vagy illó anyagokból álló, üstökösszerű csóvát húznak maguk után.

A Roche-sugáron belül tartózkodó bolygókkal rendelkező fehér törpék egy további különlegességet is mutatnak: légkörük fémekkel szennyezett. Egy fehér törpe felszínén a gravitációs gyorsulás jelentős, így a nehezebb elemek a csillag középpontjához közelebb találhatók. E szerint légkörükben, azokban a rétegekben, melyeket spektroszkópia segítségével még meg tudunk figyelni, csak a legkönnyebb elemeknek lenne szabad felgyülemleni: hidrogénnek és héliumnak. A fémszennyezett légkörű fehér törpék esetében azonban a fentieknél nehezebb elemeket lehet kimutatni a csillagok spektrumában. Az első fémekkel szennyezett atmoszférájú fehér törpét Adrian van Maanen fedezte fel 1917-ben. Azóta a legkülönfélébb elemek jelenlétét sikerült kimutatni több mint ötven fehér törpe légkörében, úgy mint: O, Na, Mg, Al, Si, P, Ca, Fe, Co, és Ni.

Egy égitest szétesése a Roche-sugáron.
Egy égitest szétesése a Roche-sugáron (fehér folytonos vonal). Időrendi sorrendben: bal felső panel: az égitest alakja a Roche-határ közelébe érve elnyúlik a csillag árapályerőinek hatására. Jobb felső panel: az égitest saját gravitációja nem tud ellentartani az árapályerőknek, így darabjaira hullik. Bal alsó panel: a keletkező törmelék a csillaghoz közelebb gyorsabban, attól távolabb lassabban kering, így az eredeti pálya mentén széthúzódik. Jobb alsó panel: a törmelék gyűrűt formál. Amennyiben a gyűrűben gáz is jelen van, a por és gáz a csillag felszínére esik a viszkozitásnak köszönhetően.

A fehér törpék légkörének fémszennyezettségét a következőképpen magyarázhatjuk: amennyiben egy bolygó a fehér törpe Roche-határán, vagy azon belül kering, anyagot veszít. Ez az anyag a csillag sugárzásának segítségével egyre szűkebb és szűkebb pályára kerülhet (Poynting-Robertson effektus). Ahogy egyre közelebb jut a csillaghoz, a hőmérséklet egyre növekszik, így a por gázzá szublimál. Ez a gáz aztán (a viszkozitás hatására) további pályazsugorodásnak lesz kitéve, és a csillagra hull. Így kerülnek tehát a csillagászati értelemben vett fémek a fehér törpe légkörébe, amivel magyarázhatóvá válik az anomális fémtartalom.

A fémes légkörű fehér törpék spektruma jól reprezentálja a szennyezőanyag összetételét. Az eddigi mérések alapján ezek összetétele hasonló a naprendszerbeli aszteroidákéhoz, illetve kőzetbolygókéhoz. Ez nem meglepő, hiszen a legtöbb, Roche-sugáron belül tartózkodó, szétesőben levő planéta összetétele is földszerű. Természetesen most is akadnak kivételek: két, a fehér törpéjük Roche-sugarán jócskán kívűl keringő gázbolygó központi csillaga szintén fémes légkörű. Adja magát a kérdés, hogy vajon ezekben a rendszerekben is vannak-e a Roche-határon belül keringő kőzetbolygók?

További érdekességképpen megjegyzendő, hogy a fehér törpék atmoszférájában fellelhető fémek izotóparányai alapján a közeljövőben az is megállapíthatóvá válhat, hogy a csillagba eső bolygón lemeztektonikai folyamatok is végbementek-e. Lemeztektonika természetesen csak kőzetbolygók felszínén lehetséges, azonban a Földön alapvető fontosságúak a szénkörforgás, és ezzel együtt az élet fenntartásához.

A téma iránt mélyebben érdeklődők remek összefoglalót olvashatnak Dimitri Veras 2021-es cikkében. A fémszennyezett légkörű fehér törpék témakörét ugyanő 2016-os összefoglalójában járja körül bővebben.

 

Jelen írás nem születhetett volna meg Dr. Regály Zsolt kitartó témavezetői munkája és mérhetetlen odaadása, valamint a Konkoly Csillagászati Intézet demonstrátori programjának és a Kulturális és Innovációs Minisztérium ÚNKP-23-2 kódszámú Új Nemzeti Kiválóság Programjának a Nemzeti Kutatási, Fejlesztési és Innovációs Alapból finanszírozott szakmai támogatása nélkül.

Az ismert több ezer fehér törpe közül jó néhány százon detektáltak már mágneses teret. Ezeknek a mágneses tereknek az erőssége pár tízezer gausstól pár száz millió gaussig terjed. (A Föld mágneses terének erőssége 0,25-0,65 gauss között változik manapság.) Más fehér törpékben nem találtak mágneses tér jelenlétére utaló nyomokat a spektrumukban.

Egy új tanulmány (http://arxiv.org/abs/1605.04458) szerzői a CFHT, WHT és más távcsöveket használva gyenge mágneses tereket kerestek fehér törpékben. Az LTT 16093 jelű fehér törpében találtak is egy 57 000 gaussos erősségű mágneses teret. Amelyik fehér törpében kimutatható volt mágneses tér jelenléte, azok szinte mind egymillió gaussnál erősebbek. A most talált a harmadik leggyengébb terű fehér törpe azok közül, ahol egyáltalán mérhető a mágneses térerősség!

Az NGC 1851 gömbhalmazban a HST-vel egy 18,05 perc periódusidővel fényváltozást mutató halvány objektumot fedeztek fel, ami az első elképzelések szerint vagy egy kettősrendszerbeli mágneses fehér törpe villódzása vagy egy két fehér törpecsillagból álló kettőscsillag fényváltozása. Mivel a Chandra-műholddal nem észleltek röntgensugárzást, az első eset kizárható, és eszerint egy olyan nyugodt kettőscsillagról van szó, ami két fehér törpéből áll. Az ilyen rendszereket AM CVn-kettősöknek nevezik, és ez az első ismert ilyen rendszer a gömbhalmazokban. (Az ilyen rendszerek egyébként energiát veszítenek keringés közben, és a két fehér törpe egymásnak ütközik a végén, egyfajta szupernóva-robbanást hozva létre.) http://arxiv.org/abs/1605.04827

ms.dvi

Az NGC 1851 és az NGC 1904 gömbhalmazok a GALEX kísérlet felvételén. A GALEX közeli és távoli ultraibolya fényben tanulmányozza az égitesteket, ahol az objektumok kissé (vagy nagyon) másképp néznek ki, mint látható fényben… Az NGC 1904 a Nyúl csillagképben található tőlünk 50 000 fényévre, így Magyarországról is észlelhető. Az NGC 1851 a déli égbolton, a Galamb csillagképben látszik, ezért magyar amatőrök által csak ritkán megfigyelt objektum, hiszen csak három fokkal emelkedik rövid időre a magyarországi horizont fölé, pedig hét magnitúdós látszó fényességével népszerű halmaz lehetne, ha a zenitben láthatnánk… – távolsága a Naprendszertől 40 000 fényév.

 

A 8-10 naptömegnél kisebb tömegű csillagok életük végén fehér törpévé válnak (a kb. 0,5 naptömegnél nagyobbak kisebb-nagyobb planetáris ködként veszítik el külső köpenyüket).

A Nap környezetében az első fehér törpét még a 19. században fedezték fel, de furcsa tulajdonságait csak a 20. század első felében magyarázták meg: ez volt a Szíriusz B, a Naptól mintegy 8,6 fényévre lévő fényes kettőscsillagrendszer halványabbik tagja.

A későbbiekben folytatódott a közeli fehér törpék felfedezése. A forró, kékes színű fehér törpék utáni kiterjedtebb hajsza eredményeként 1986-ban Green vezetésével fedeztek fel jópárat, a hidegebb fehér törpéket pedig általában sajátmozgásuk segítségével azonosították 1988-ban Liebert vezetésével, de a leghalványabb fehér törpéket akkor még nem találták meg. Erre csak újabban került sor, amikor a nagyon mély égboltfelmérésekkel ki lehetett terjeszteni a vizsgálatokat sokkal halványabb objektumokra is. Például a Sloan Digital Sky Survey ilyen projekt, amelyekkel akár 16 magnitúdó abszolút fényességű fehér törpéket is lehetett azonosítani a közelünkben, de a 2006-os első vizsgálat még nem találta meg az összes közeli fehér törpét, különböző kiválasztási efefktusok miatt. 2008-ban, illetve 2012-ben jelentek meg olyan tanulmányok, amelyek a Nap 20 parszekes környezetében az összes fehér törpét fel kívánták fedezni: ebben a két munkában összesen mintegy 130 ilyen fehér törpét soroltak fel, de már akkor hozzátették az akkori kutatást végzők, hogy becsléseik szerint az ilyen távolságig előforduló fehér törpéknek csak kb. 90%-át találhatták meg. Olvasd tovább