VCSE - APOD - 2020. 01. 06.
VCSE – Jupiter a Junóról nézve – Forrás: APOD

A Jupiter némely felhőformációja meglehetősen összetett. A felvételen látható rendezetlen felhőzetet a NASA Juno űrszondája készítette, mely a Naprendszer legnagyobb bolygója körül kering. A kép a Jupiter felhőzete felett 15 000 kilométerrel készült olyan közelről, hogy a bolygó kevesebb mint fele látszik csak. A jobb oldalon megfigyelhető durva, fehér felhőzet nagy magasságú, “felpattanó felhőzet”.  A Juno-küldetést 2021-ig meghosszabbították, így új módokon vizsgálhatjuk a bolygót. Az űreszköz többek között a Jupiter gravitációs mezejét is vizsgálta, ezzel meglepő bizonyítékot talált arra, hogy a bolygó nagy része talán folyékony halmazállapotú.

A Juno-küldetésről és a vele készült szép képekről, eredményekről többször is írtunk már:

A természet és a technika csodái (2018. jún. 7.)

A Juno friss képei (2017. dec. 7.)

Juno (2016. júl. 11.)

VCSE - A Jupiter a Junóról nézve - APOD
VCSE – A Jupiter a Junóról nézve – APOD

A 2011-ben útjára bocsátott Juno űrszonda 2016-ban érkezett meg a Jupiterhez. E küldetés részleteiről korábban már részletesen írtunk honlapunkon, és képei közül néhányat be is mutattunk. A Juno feladata azonban a Jupiter gravitációs terének feltérképezése, a képeket majdhogynem egy amatőr szintű kamerával, majdnem csak PR-célokból készíti.

Ezek a képek, mint a Juno fenti képe is, csodálatos világot mutatnak be egy nagyszerű űreszközről fotózva. Bár a Jupitert korábban is vizsgálták űrszondák, a Jupiter még mindig nagyon komplex, összetett rendszernek bizonyul, és tartogat meglepetéseket.  Junónak köszönhetően tudjuk, hogy mágneses tere a korábban ismertnél összetettebb, sokkal több tekergést mutatnak mágneses erővonalak, mint egy sima dipólrendszer, pl. a Föld esetében (de a Jupiter gyorsabban is forog, mint a Föld). Olyan, mintha többpólusú mágneses tere lenne, nem csak déli és északi…

A Juno rádiómérései a Jupiter légkörét sokkal részletesebben térképezték fel, rádióhullámhosszakon több száz km mélyre is le lehet látni az óriásbolygóba.

A Juno elnyúlt pályáján mintegy 53 nap alatt teljesít egy keringést a római főistenről elnevezett bolygó körül. A fenti kép a Jupiter körüli 11-ik keringése során készült. Mindenfelé egymáshoz képest párhuzamos öveket: sávokat és zónákat figyelhetünk meg, amelyek tele vannak pöttyökkel. Egyes pöttyök kerülete sötét színű és belül fehéresek. Mások belül sötétek, egyesek barnásak, barnásvörösesek. Mindenütt kavargó, turbulens leszakadó és újrakeletkező félörvényeket, hullámokat lehet látni főleg kék, de más színekben is. A kerek foltokat (nevezik őket néha színük után sötét vagy világos, fehér foltoknak is) akár kisebb távcsővel, 100x-os vagy nagyobb nagyítással elmosódottan a Földről is látni amatőrtávcsövekkel. A színeket ilyen-olyan anyagok összegyűlése és összesűrűsödése okozza. A Jupiter meteorológiája nagyon összetett, a szelek sokkal erősebbek a földinél, és ilyen részletes képekkel jobban tanulmányozhatók, a színek nagyon erősek (főleg, ha a képfeldolgozás során ki is emelik őket kissé…). A Juno-küldetés sikerét földi távcsövek támogatása is fokozza, lehetséges ugyanis a kamerával célba venni érdekesebb jelenségeket. Éppen ezért kérik az amatőröket, hogy jobban sikerült Jupiter-fotóikat töltsék fel ide, amelyekről a küldetés irányítói könnyebben le tudják szűrni, mire lenne érdemes legközelebb irányozni.

A Juno a NASA egyik űrszondája, 2011. augusztus 5-én indították útjára Cape Canaveral-ből, és 2016. július 4-én, tegnap érkezett meg küldetése célpontjához, a Jupiterhez.
Poláris pályán fog keringeni majd a Jupiter körül, azaz elrepül északi és déli sarka felett rendszeresen.
Feladata elsősorban a Jupiter gravitációs terének feltérképezése, a mágneses terének és magnetoszférájának sarki régióinak vizsgálata.
A Jupiter belső szerkezetét – bármilyen meglepő is – alig ismerjük. Még azt sem tudjuk, van-e szilárd, kőzetekből vagy fémből álló magja, és ha igen, mekkora. Korábban kiadott könyvekben biztosra vették a szilárd vagy fémes mag létezését, az utóbbi 10 év tanulmányai azonban alaposabb vizsgálat alapján arra jutottak, hogy nem tudjuk, van-e a Jupiternek kőzetmagja, vagy fémes magja… A különböző szerzők között akad, aki védi a korábbi eredményeket, mások szerint egyáltalán nincs magja, és a két álláspont közti köztes vélemény (van, de kisebb, mint korábban gondolták) is előfordul. A Jupiter gravitációs terének feltérképezéséből majd el lehet dönteni a kérdést, a gravitációs terét ugyanis nem egyszerűen csak a Jupiter tömege, hanem belső tömegeloszlása, koncentrációja is meghatározza.
Az űrszonda neve a görög-római mitológiából ered, Jupiter feleségét hívták Junonak. A mitológiában Jupiter egy hatalmas felhőtakarót eresztett maga köré, elrejteni rossz tulajdonságait és dolgait, de Juno képes volt átpillantani a rejtőfelhőkön és felfedni Jupiter valódi természetét. Az analógia nyilvánvaló: a Juno űrszondától is a Jupiter belsejébe való pillantást várunk gravitációs tere feltérképezésével… (A Juno egyben a JUpiter Near-polar Orbiter-nek is a rövidítése.)
A Jupitert korábban tudományos vizsgálatok céljéból a Pioneer-10, -11 (1972-ben, ill. 1973-ban), a Voyager-1 és -2 (mindkettő 1977-ben) űrszondák látogatták meg, de mind elrepült mellette, majd 1995-2003 között a Galileo űrszonda keringett és működött körötte. Így a Juno csak a második Jupiter körül keringő űrszonda. Az Ulysses napkutató űrszonda (1990-ben), a Cassini-Huygens (1997-ben) és a New Horizons (2006-ban) szintén elrepült a Jupiter mellett, de akkor a cél nem tudományos vizsgálatok végzése volt, hanem a Jupiter gravitációs erőterének kihasználása volt, hogy hintamanőverrel felgyorsuljanak és más pályára álljanak.
A Juno energiaellátását három szárnyra szerelt napelemtáblák biztosítják. Ezek a valaha épített legnagyobb napelemtáblák, amiket bármelyik bolygókutató űrszonda megkapott. A Jupiter ötször messzebb van a Naptól, mint a Föld, ezért huszonötször kevesebb napenergia éri ezeket a napelemtáblákat időegység alatt, mintha a Juno a Föld körül keringene. Ezért is kellenek jó nagy napelemtáblák. Korábban a Pioner-10, -11, Voyager-1, -2, de az Ulysses, Cassini-Huygens, New Horizons és a a Galileo is radioaktív termoelektromos generátort használt.
Az indulás után két évvel, 2013-ban egy Föld melletti elrepülés gyorsította fel a Junot. Két 53 nap keringésidejű fordulatot tesz majd a Jupiter körül megérkezése után, idén októberben ismét begyújtja majd rakétáit, és 14 napos keringésidejű, poláris pályára áll majd a Jupiter körül. 37 keringésre tervezik az élettartamát, ami mindössze 20 havi működést jelent: 2018. februárjáig fog regulárisan működni. Utána a Jupiter légkörébe léptetik és ott elég, hogy véletlenül se eshessen később valamelyik Jupiter holdra, vagy ha egy meteorit eltöri, a darabok ne hullhassanak oda. Ez ugyanis azzal a veszéllyel járna, hogy biológiailag beszennyezi (a Földről rákerült az építés során valamennyi mikroba), és az a Jupiter egyes holdjainak esetleges életét megzavarja, megbetegíti, vagy egyáltalán: az ott kialakult életet megzavarhatja, ha egyáltalán van ott valami. (Ha nincs, akkor meg nem akarjuk beszennyezni, nehogy a saját koszunkkal megzavarjuk a későbbi méréseket!) Infravörös és mikrohullámú tartományban működő műszerei a Jupiterről érkező hő mennyiségét is mérik majd. (A Jupiter gravitációsan összehúzódik, ezért több energiát bocsát ki, mint amennyit a Naptól kap! Ennek pontos megmérése az összehúzódás pontos mértékét, ütemét, és a belső anyagi összetételét segít meghatározni.)
A Juno teljes költségvetése 700 millió USA-dollár volt eredetileg, de 2011-re ez 1,1 milliárdra nőtt. Ez összemérhető azzal, amit az ESA a PLATO-ra szán (kb. 850 millió euró), ez közepes méretű és költségvetésű űrmissziónak számít.
A Junón van egy magnetométer a mágneses tér feltérképezésére, a JIRAM közeli infravörös színképelemző készülék (2-5 mikrométer között) az 50-70 km mélyen lévő rétegek észlelésére; az MWR mikrohullámú radiométer (sugárzásmérő), 600 MHZ és 22 GHz között több frekvencián méri majd a Jupiter rádiósugárzását; a GS gravitációs műszer, ami valójában egy rádióadó, amellyel a Juno sebességét lehet mérni. A rádióadó hullámai ugyanis kék- és vöröseltolódást szenved, ahogy az űrszonda majd lelassul és felgyorsul a Jupiter gravitációs erőterének változásai miatt. Egy JEDI névre keresztelt részecskeszámláló, egy Waves névre hallgató, a Jupiter sarki fényeinek rádiósugárzását mérő műszer, egy UVS jelű, ultraibolya spektrográf is el van helyezve a műholdon. Hogy a nagyközönség igényeit kielégítsék, a JCM névre hallgató, látható fényben működő kamera is felkerült a Junóra, ez az egyetlen képalkotó eszköz rajta. De csak hét keringésen át fog működni, mivel a Jupiter erős mágneses és részecskesugárzási tere tönkre fogja tenni. A cél most nem a szép képek gyártása, hanem a Jupiter belsejének megismerése.