A Tejútrendszerbeli Palomar 4 (Pal 4) gömbhalmazt egymástól függetlenül fedezte fel Edwin Hubble 1949-ben és Albert George Wilson 1955-ben. Távolságát tőlünk 356 ezer fényévre becsülik. Noha a Tejútrendszer gömbhalmaza, messzebb van jelenleg tőlünk, mint a 163 ezer fényévre lévő Nagy Magellán-Felhő vagy a Sagittarius-törpegalaxis! Ennek oka, hogy nagyon elnyúlt pályán kering a Tejútrendszer centruma körül.

VCSE - Palomar 4
VCSE – Palomar 4 

A Palomar 4 tömege csak mintegy 30 000 naptömeg, a halmazban élesen elválnak a nagytömegű csillagok – amik a magban vannak – a kistömegűektől (amik inkább a szélére húzódtak). Ezt a jelenséget hívják tömegszegregációnak. De kistömegű csillagokból nagyon kevés van benne más halmazokhoz képest Az Univerzum élettartama alatt még nem válhattak volna ennyire szét a nagy- és kistömegű csillagok, egy picivel nagyobb keveredést várnánk benne. A Pal 4 tehát vagy így született eleve, vagy a nagyon elnyúlt, erősen excentrikus pályáján érték hatalmas árapályerők, amik ilyenre alakították.

VCSE - Palomar 4
VCSE – Palomar 4

Egy iráni-német-cseh-amerikai kutatócsoport alaposan megvizsgálta ezt a második lehetőséget. Arra jutottak, hogy a Pal 4 pályájának excentricitása e=0,9 körül lehet (ilyen erős elnyúltsággal a Naprendszerben pl. csak az üstökösök rendelkeznek), és amikor pericentrumban jár, akkor 5 kiloparszekre található a Tejútrendszer centrumától. Amikor megszületett, a Pal 4 tömege 100 000 naptömeg lehetett (ez hasonló a többi gömbhalmazéhoz), és a kezdeti tömeg fele 4-5 parszeken belül lehetett a magjában (ez is hasonló más gömbhalmazokéhoz). Amikor pericentrumban – a Tejútrendszer magjához legközelebb – jár, akkor a Galaxis árapályereje okozhatta a megfigyelt tömegszegregációt. Ha az árapályerők okozta tömegszegregációra a modellszámításaik helyesek, akkor van egy érdekes következménye a kalkulációiknak: a Pal 4-nek a Tejútrendszer körüli, sok évmilliónyi keringésidejű mozgása miatt az égen el kell mozdulnia (ahogy a bolygók is elmozdulnak látszólag az égen számunkra a Nap körüli keringésük során), mégpedig deklinációban -0,52… -0,38 milliívmásodperc/év, rektaszcenzióban -0,30…-0,15 milliívmásodperc/év közötti nagyságú sajátmozgást kellene mutatnia. Bármekkora kicsi szögekről is van szó (a milliívmásodperc az ívmásodperc ezredrésze, az ívmásodperc pedig kb. a telehold látszó méretének 1800-ad része!), a jelenleg is észleléseket végző Gaia asztrometriai műhold kb. 200 mikroívmásodperc/év szögelmozdulásokat már tud mérni, így a várt szögelmozdulás a Pal 4 esetében mérhető ma is. A Gaia végső katalógusa 2019 környékén jelenik meg, így a kutatócsoport jóslata ellenőrizhető lesz a közeli jövőben. Érdekes, hogy a tömegszegregációból a halmaz sajátmozgására is lehet következtetni. (Forrás: https://arxiv.org/abs/1701.06168)

Megtalálták az eddig ismert legtávolabbi UFD-galaxist. Az UFD az Ultra Faint Dwarf-galaxy, vagyis a nagyon halvány törpegalaxis rövidítése (vagy, ha úgy tetszik, ultrahalvány törpegalaxis). Az UFD-k az Univerzum leghalványabb galaxisai közé tartoznak, és hihetetlenül alacsony felületi fényességűek, ezért nagyon nehéz felfedezni őket. Az UFD-k csak ezer-százezer naptömegűek (egy Tejútrendszer méretű közepes galaxis látható anyagának tömege 100 milliárd naptömeg!), öregek, fémszegények. Némelyik UFD abszolút fényessége halványabb, mint egyik-másik tejútrendszerbeli gömbhalmazé. Sötét anyag tartalmuk magas. A Tejútrendszer körül hat UFD-t ismernek. Az UFD-k talán az első galaxiskezdemények fosszíliái lehetnek, amelyek nem tudtak elfejlődni igazi galaxissá: csillaganyaguk megszökött és a csillaghalmaz felbomlott, csak a magjukból maradt vissza valamicske kevés. Több csillagász lehetségesnek tartja, hogy az összes galaxistípusból szám szerint az UFD-kből van a legtöbb, csak nagyon nehéz felfedezni őket. Mindenesetre a legnagyobb UFD-kből is milliónyit kellene egybehordani, hogy a Tejútrendszer látható anyagának tömegét kitegyék – tehát ezek nagyon kicsi galaxisok. Az első UFD-ket csak 2005-ben fedezték fel a Sloan Digital Sky Survey-jel, tehát ez nagyon új eredménynek számít a csillagászatban. A mi Galaxisunkon túl az M31 körül is ismert pár UFD. 2015-ben 15 UFD-t találtak a Nagy Magellán-felhő és a Tejútrendszer körül. 2014-ben a Virgo galaxishalmazban is találtak egyet (neve Virgo UFD1), amely csak 81 parszek átmérőjű. Látszólag egyik galaxishoz sem tartozik, ezért tekintik aprónyi önálló csillagvárosnak. Annyira új felismerés az UFD-k léte, hogy 2017 januárjában még önálló szócikket sem találtunk erről az új objektumtípusról az angol nyelvű wikipédián.

A Kemence (Fornax) csillagképben lévő Fornax galaxishalmaz egyik óriásgalaxisa, az NGC 1316 körül készítettek a Hubble Űrtávcsővel (HST) mély felvételeket; így találtak az NGC 1316-tól 55 kpc-re egy felbontott csillagcsoportnak tűnő objektumot, ami valójában egy UFD. Az új törpegalaxisbeli felbontott csillagok fémszegény vörös óriáságbeli csillagok, ezért nagyon fényesek és innen a Föld környékéről is láthatók a HST-vel. A törpegalaxisbeli két legfényesebb vörös óriás segítségével kiderült, hogy az új UFD 19 (plusz-mínusz 1,3) Mpc-re van tőlünk, ezzel a legtávolabbi ismert UFD-nek számít. Neve Fornax UFD1 lett. A 12 milliárd éves vörös óriáscsillagai extra fényszegények (a Nap fémtartalmának csak négy ezredét tartalmazzák). Tényleg törpegalaxisról van szó: becsült átmérője 146 parszek. Ezzel mérete hasonló a Virgo UFD1-hez. A kutatók szerint még jobb határmagnitúdójú vizsgálatokkal még több UFD-t lehetne felfedezni.

VCSE - NGC 1316 (ESO)
VCSE – NGC 1316 (ESO)

A mellékelt képen balra a nagy kép az NGC 1316-ot mutatja az Európai Déli Obszervatórium (ESO) archívumából. A bal alsó sarokbeli négyzet mutatja a jobboldali képek elhelyezkedését az NGC 1316 körül. (Észak felfelé, balra kelet.) A nagy NGC 1316-tól északra (a képen felfelé) látszó galaxis az NGC 1317. A jobb felső képen az egyik galaxis melletti piros kör jelöli az UFD1 helyét. A jobb alsó, 15×15 ívmásodperces képkivágáson egy csillagsűrűsödés látszik, ez a HST-vel készült kép. Ez a csillagcsoport a Fornax UFD1 jelű új, extragalaktikus objektum. Csillagai felbontottak a HST képén.

(Forrás: https://arxiv.org/abs/1701.03465)

Idén december 25-én elhunyt Vera Rubin, amerikai csillagásznő, akinek nevét leginkább a sötét anyag kapcsán ismerjük.

 

A sötét anyag létezését Franz Zwicky svájci származású csillagász már a II. világháború előtti években megsejtette. Kétséget kizáró bizonyítékot a sötét anyag jelenlétére azonban Vera Rubin talált az 1970-es években. Rubin mutatta ki spektroszkópiai észlelésekkel, hogy a galaxisokban a csillagok úgy járják körbe a galaxisok centrumát, hogy eközben keringési sebességük majdhogynem állandó, nem függ a galaxis középpontjától mért távolságtól. Ez a Naprendszerben nem így van: a bolygók annál kisebb sebességgel haladnak pályájukon, minél távolabb vannak a Naptól. A Naphoz közelebbi Vénusz pl. 35 km/s sebességgel halad pályáján, a Föld 30 km/s-cel, a Naptól távolabbi Jupiter pedig 13 km/s-mal rója pályáját a Nap körül. A galaxisbeli csillagokra is hasonlót várnánk, ehhez képest pl. a Tejútrendszerben a maghoz közelebb a csillagok sebessége nő, ha a centrumtól távolabb vannak (!), majd állandó a keringési sebesség a magtól kifelé a legkülső csillagokig (olyan 220 km/s), és más galaxisokban is nagyon gyakran ez a helyzet. Ilyen sebességeloszlást csak olyan tömegeloszlás hozhat létre, ami körülveszi és áthatja az egész galaxist, gravitációs kölcsönhatásra képes, és a csillagok keringési sebességét így módosítja; de ez a gravitáló tömeg láthatatlan műszereinkkel (vagy túl halvány még mindig nekik), ezért nevezik sötét vagy nem látható anyagnak.

 

Egy másik megoldás, hogy a sötét anyag-jelenséget valamiféle extra erőhatás hozza létre.

 

Az utóbbi évtizedek nem oldották meg a sötét anyag-rejtélyét: sem halvány, alig látható anyagot nem találtak, sem extra, túl sötét részecskéket sem, de eddig nem ismert erőhatást (kölcsönhatást) sem, ami a megfigyelteket létrehozza.

 

A szóban forgó extra gravitációs erőmezőt átlagosan egy galaxisban a látható anyag 10-20-szorosát kitevő láthatatlan (sötét) anyag gravitációja tudná létrehozni, nem kevésről van tehát szó. És nem tudjuk, mi az.

 

A sötét anyag létezésére vonatkozó bizonyítékok elfogadtatása pár évbe került, és nem ment könnyen.
Vera Rubin, a sötét anyag-elméleteket inspiráló megfigyelések végzője 1928-ban született az USA  Pennsylvania tagállamában, és 88 évesen hunyt el. A Cornell és a Georgetown egyetemeken tanult, majd – egyebek közt – a Georgetownon és a Carnegie Intézetben is dolgozott. Témavezetői, tanárai között volt R. Feynmann és H. Bethe Nobel-díjas fizikusok, doktori témavezetője George Gamow, a Nagy Bumm-elmélet egyik első megfogalmazója volt. Rubin egyik neves tanítványa volt Sandra Faber, a Faber-Jackson-reláció egyik megalkotója, amelyet az extragalaxisok távolságmérésében használnak a mai napig is.

 

A csillagászatban a Rubin-Ford-effektust is részben róla nevezték el: azt figyelték meg szintén az 1970-es években, hogy számos közeli Sc típusú spirálgalaxis nem vesz részt a Hubble-áramlásban, hanem a Pegazus csillagképben lévő egyik pont felé áramlanak nagy sebességgel. Ez az effektus az egyike annak a sok eltérésnek, ami az általános Hubble-áramlástól mutatkozik.

 

Vera Rubinnak négy gyermeke volt, mind a négy természettudós lett (két geológus, egy matematikus, egy csillagász).

 

Nevét őrzi az 1988-ban a Shoemaker házaspár által a Palomar-hegyről felfedezett 5726 Rubin kisbolygó.

Néha furcsa alakzatokat produkál a Természet: hol teljesen szabályszerűt és szimmetrikusat, hol éppen kaotikussága miatt tetszik nekünk. A Természet nyelve a matematika, titkosírásának megfejtői a természettudományok, de ecsetjét a legjobb festők kezelhették. Oly’ sok szép természet- és asztrofotó mellett erre jó példa a kissé torz gyűrű alakú Sharpless 2-308 is (Sh 2-308).

Mai kép - Egy Wolf-Rayet - köd: Sh 2-308 - VCSE
Mai kép – Egy Wolf-Rayet – köd: Sh 2-308 – VCSE
A mellékelt képen látható Sh-2 308 mintegy 5200 fényévre van a Naprendszertől a Nagykutya (Canis Maior) csillagképben, látszó átmérője kissé nagyobb a teleholdnál, valódi átmérője pedig kb. 60 fényév. Egy, a Napnál hússzor nagyobb tömegű, preszupernóva (vagyis szupernóva-robbanás előtti) állapotban lévő Wolf-Rayet csillag erős szele és sugárzása (részben erős ultraibolya sugárzása) hozta létre ezt az alakzatot. Egyszerűen a Wolf-Rayet csillagok nagyon erős csillagszele összesöpri a csillagközi anyagot maga előtt, a csillagszél és a csillagközi anyag ütközése pedig sugárzásra készteti. Az ilyen ködöket néha Wolf-Rayet-ködöknek nevezik A képen látható köd talán csak 70 ezer évvel ezelőtt keletkezett. A kék buborékfalban a sugárzást elsősorban ionizált oxigénatomok rekombinációs sugárzása hozza létre.
A Wolf-Rayet csillagokról részletesebben 2016. októberében Csizmadia Szilárd beszélt a Virtuális Csillagászati Klubban.  Ennek felvétele nemsokára felkerül a VCSK archívumába.
A fenti képet Anis Abdul készítette Texas-ból 2016. október 29-én és 30-án. 20 x 480 sec Halfa és 57 x 600 sec OIII expizíciós időkkel és szűrőkkel készült képet adott össze, amelyeket LRGB szűrős képekkel egészített ki. A képskála 2,16 “/pixel. A távcső egy mindössze 106/530-as Takahashi FSQ 106 ED műszer volt, ZWO ASI1600MM hűtött kamerával és Astro-Physics AP 900 mechanikával ellátva. Mindehhez még egy vezetőtávcsövet és vezetőkamerát használt. Szeretett volna többet is exponálni rá, de esős-felhős két hetes időszak jött, majd megérkezett a teleholdas időszak, ami alkalmatlan ilyen ködösségek fotózására… Bár az APOD már a nap csillagászati képének választotta 2016. dec. 20-án, Abdul szeretne további három éjszakán fényt gyűjteni róla és hozzáadni a képhez, hogy még több részletet és árnyalatot felfedjen.

supermoonA “szuperhold” nem létező, mi több, felesleges csillagászati szakkifejezés lenne, ha létezne; de éppen ezért nem is létezik, nem használjuk a szak- és amatőrcsillagászatban. Ennek ellenére “természetesen” a média, a szenzációvadász, szerepelni vágyó ismeretterjesztők stb. csak azért is felidézik egyre-másra.

Lehetne szupermars, minihold, gigahold stb. – de minek? Ugyan mit segít ez a Természet megértésében?

Persze, a butaság nem tud megállni, maga alá adja a lovat. A earthsky.org oldalon Bruce McClure összeszedte, hogy ki szerint lesz a 2014. októberi telehold szuperhold-e és ki szerint nem. Ugyanis ha elkezdjük elemezni a definíciót, kiderül, nem csillagász szakértő határozta meg a szuperhold fogalmát, hanem egy asztrológus. Közbevetőleg felmerül a kérdés: aki amatőrcsillagásznak tartja magát és a szuperhold fogalmát és használatát nem ellenzi, az tulajdonképpen miért is terjeszt egy csillagászati ismeretterjesztő tevékenység során asztrológiai szakfogalmat egyáltalán??

Érdekességképpen érdemes végigolvasni a következőket:
Richard Nolle szerint 2014-ben szuperhold következett be júliusban, augusztusban es szeptemberben.
Fred Espenak szerint 2014-ben szuperhold volt/lesz júniusban, júliusban, augusztusban, szeptemberben és októberben – júniusban és októberben R. Nolle szerint nem volt.


Három az öttel szemben – egy ilyen triviálisan egyszerű kérdésben sem lehet megegyezni???
Olvasd tovább