supermoonA “szuperhold” nem létező, mi több, felesleges csillagászati szakkifejezés lenne, ha létezne; de éppen ezért nem is létezik, nem használjuk a szak- és amatőrcsillagászatban. Ennek ellenére “természetesen” a média, a szenzációvadász, szerepelni vágyó ismeretterjesztők stb. csak azért is felidézik egyre-másra.

Lehetne szupermars, minihold, gigahold stb. – de minek? Ugyan mit segít ez a Természet megértésében?

Persze, a butaság nem tud megállni, maga alá adja a lovat. A earthsky.org oldalon Bruce McClure összeszedte, hogy ki szerint lesz a 2014. októberi telehold szuperhold-e és ki szerint nem. Ugyanis ha elkezdjük elemezni a definíciót, kiderül, nem csillagász szakértő határozta meg a szuperhold fogalmát, hanem egy asztrológus. Közbevetőleg felmerül a kérdés: aki amatőrcsillagásznak tartja magát és a szuperhold fogalmát és használatát nem ellenzi, az tulajdonképpen miért is terjeszt egy csillagászati ismeretterjesztő tevékenység során asztrológiai szakfogalmat egyáltalán??

Érdekességképpen érdemes végigolvasni a következőket:
Richard Nolle szerint 2014-ben szuperhold következett be júliusban, augusztusban es szeptemberben.
Fred Espenak szerint 2014-ben szuperhold volt/lesz júniusban, júliusban, augusztusban, szeptemberben és októberben – júniusban és októberben R. Nolle szerint nem volt.


Három az öttel szemben – egy ilyen triviálisan egyszerű kérdésben sem lehet megegyezni???
Olvasd tovább

A napokban egy új tanulmány arra mutatott rá, hogy az Univerzum nemrég felfedezett gyorsuló tágulását a korábbiaknál kevésbé vehetjük biztosra. A napisajtóban ez sajnos már úgy jelent meg, hogy nem is tágul gyorsulva az Univerzum… (Pl. AZ Indexen).

Az Ia típusú szupernóvák (SN Ia) abszolút fényessége többé-kevésbé állandó, vagyis ha ugyanolyan távolságról nézi valaki őket, ugyanolyan fényesnek látja őket. A “több-kevéssbé”-t pedig figyelembe lehet venni: ez függ attól, hogy milyen típusú fehér törpe robbant fel, mennyi volt a fényelnyelés a szülőgalaxisban, a mi Galaxisunkban stb. Ezek a járulékos effektusok ugyanis nyomot hagynak a fénygörbe alakján (vagyis, hogy a szupernóva fényessége milyen ütemben csökken az idő függvényében), így hosszú hónapok, akár egy évig tartó megfigyelésekkel utólag meg lehet figyelni, milyen aprónyi mértékben tér el az SN fényessége az átlagtól.

Ez, és a látszó, itt a Földön megfigyelt fényesség aránya adja a távolságot (kétszer messzebb az SN-től négyszer, háromszor messzebb tőle kilencszer halványabbnak látszik stb.) A galaxis távolodási sebessége a színképe Doppler-eltolódásából ismert. A távolodási sebesség és a távolság aránya konstans, ez a Hubble-állandó. A korábbi, kisebb mintájú tanulmányok szerint ez az arány azonban nem állandó volt, hanem függött a távolságtól, ez mutatta, hogy az Univerzum gyorsulva tágul. Olvasd tovább

A Juno a NASA egyik űrszondája, 2011. augusztus 5-én indították útjára Cape Canaveral-ből, és 2016. július 4-én, tegnap érkezett meg küldetése célpontjához, a Jupiterhez.
Poláris pályán fog keringeni majd a Jupiter körül, azaz elrepül északi és déli sarka felett rendszeresen.
Feladata elsősorban a Jupiter gravitációs terének feltérképezése, a mágneses terének és magnetoszférájának sarki régióinak vizsgálata.
A Jupiter belső szerkezetét – bármilyen meglepő is – alig ismerjük. Még azt sem tudjuk, van-e szilárd, kőzetekből vagy fémből álló magja, és ha igen, mekkora. Korábban kiadott könyvekben biztosra vették a szilárd vagy fémes mag létezését, az utóbbi 10 év tanulmányai azonban alaposabb vizsgálat alapján arra jutottak, hogy nem tudjuk, van-e a Jupiternek kőzetmagja, vagy fémes magja… A különböző szerzők között akad, aki védi a korábbi eredményeket, mások szerint egyáltalán nincs magja, és a két álláspont közti köztes vélemény (van, de kisebb, mint korábban gondolták) is előfordul. A Jupiter gravitációs terének feltérképezéséből majd el lehet dönteni a kérdést, a gravitációs terét ugyanis nem egyszerűen csak a Jupiter tömege, hanem belső tömegeloszlása, koncentrációja is meghatározza.
Az űrszonda neve a görög-római mitológiából ered, Jupiter feleségét hívták Junonak. A mitológiában Jupiter egy hatalmas felhőtakarót eresztett maga köré, elrejteni rossz tulajdonságait és dolgait, de Juno képes volt átpillantani a rejtőfelhőkön és felfedni Jupiter valódi természetét. Az analógia nyilvánvaló: a Juno űrszondától is a Jupiter belsejébe való pillantást várunk gravitációs tere feltérképezésével… (A Juno egyben a JUpiter Near-polar Orbiter-nek is a rövidítése.)
A Jupitert korábban tudományos vizsgálatok céljéból a Pioneer-10, -11 (1972-ben, ill. 1973-ban), a Voyager-1 és -2 (mindkettő 1977-ben) űrszondák látogatták meg, de mind elrepült mellette, majd 1995-2003 között a Galileo űrszonda keringett és működött körötte. Így a Juno csak a második Jupiter körül keringő űrszonda. Az Ulysses napkutató űrszonda (1990-ben), a Cassini-Huygens (1997-ben) és a New Horizons (2006-ban) szintén elrepült a Jupiter mellett, de akkor a cél nem tudományos vizsgálatok végzése volt, hanem a Jupiter gravitációs erőterének kihasználása volt, hogy hintamanőverrel felgyorsuljanak és más pályára álljanak.
A Juno energiaellátását három szárnyra szerelt napelemtáblák biztosítják. Ezek a valaha épített legnagyobb napelemtáblák, amiket bármelyik bolygókutató űrszonda megkapott. A Jupiter ötször messzebb van a Naptól, mint a Föld, ezért huszonötször kevesebb napenergia éri ezeket a napelemtáblákat időegység alatt, mintha a Juno a Föld körül keringene. Ezért is kellenek jó nagy napelemtáblák. Korábban a Pioner-10, -11, Voyager-1, -2, de az Ulysses, Cassini-Huygens, New Horizons és a a Galileo is radioaktív termoelektromos generátort használt.
Az indulás után két évvel, 2013-ban egy Föld melletti elrepülés gyorsította fel a Junot. Két 53 nap keringésidejű fordulatot tesz majd a Jupiter körül megérkezése után, idén októberben ismét begyújtja majd rakétáit, és 14 napos keringésidejű, poláris pályára áll majd a Jupiter körül. 37 keringésre tervezik az élettartamát, ami mindössze 20 havi működést jelent: 2018. februárjáig fog regulárisan működni. Utána a Jupiter légkörébe léptetik és ott elég, hogy véletlenül se eshessen később valamelyik Jupiter holdra, vagy ha egy meteorit eltöri, a darabok ne hullhassanak oda. Ez ugyanis azzal a veszéllyel járna, hogy biológiailag beszennyezi (a Földről rákerült az építés során valamennyi mikroba), és az a Jupiter egyes holdjainak esetleges életét megzavarja, megbetegíti, vagy egyáltalán: az ott kialakult életet megzavarhatja, ha egyáltalán van ott valami. (Ha nincs, akkor meg nem akarjuk beszennyezni, nehogy a saját koszunkkal megzavarjuk a későbbi méréseket!) Infravörös és mikrohullámú tartományban működő műszerei a Jupiterről érkező hő mennyiségét is mérik majd. (A Jupiter gravitációsan összehúzódik, ezért több energiát bocsát ki, mint amennyit a Naptól kap! Ennek pontos megmérése az összehúzódás pontos mértékét, ütemét, és a belső anyagi összetételét segít meghatározni.)
A Juno teljes költségvetése 700 millió USA-dollár volt eredetileg, de 2011-re ez 1,1 milliárdra nőtt. Ez összemérhető azzal, amit az ESA a PLATO-ra szán (kb. 850 millió euró), ez közepes méretű és költségvetésű űrmissziónak számít.
A Junón van egy magnetométer a mágneses tér feltérképezésére, a JIRAM közeli infravörös színképelemző készülék (2-5 mikrométer között) az 50-70 km mélyen lévő rétegek észlelésére; az MWR mikrohullámú radiométer (sugárzásmérő), 600 MHZ és 22 GHz között több frekvencián méri majd a Jupiter rádiósugárzását; a GS gravitációs műszer, ami valójában egy rádióadó, amellyel a Juno sebességét lehet mérni. A rádióadó hullámai ugyanis kék- és vöröseltolódást szenved, ahogy az űrszonda majd lelassul és felgyorsul a Jupiter gravitációs erőterének változásai miatt. Egy JEDI névre keresztelt részecskeszámláló, egy Waves névre hallgató, a Jupiter sarki fényeinek rádiósugárzását mérő műszer, egy UVS jelű, ultraibolya spektrográf is el van helyezve a műholdon. Hogy a nagyközönség igényeit kielégítsék, a JCM névre hallgató, látható fényben működő kamera is felkerült a Junóra, ez az egyetlen képalkotó eszköz rajta. De csak hét keringésen át fog működni, mivel a Jupiter erős mágneses és részecskesugárzási tere tönkre fogja tenni. A cél most nem a szép képek gyártása, hanem a Jupiter belsejének megismerése.

A hosszú időre kiterjedő, sokáig végzett, akár több generáción át folytatott méréseknek nagy jelentősége van a csillagászatban, mert sok változás csak igen hosszú idő alatt megy végbe az égbolton. (Hasonló igaz a folyamatosan, kitartóan végzett amatőrcsillagászati munkára is!)

Most egy ilyen mérési sorozat eredményét mutatjuk be: az NGC 5548 extragalaxis 43 évre kiterjedő spektroszkópiai méréseit elemezték. 1972-től kezdődően több, többnyire 1-2 méteres  távcsővel észlelték ezt a mélyég-objektumot, a legutolsó 12 év adata most lát csak napvilágot. 1600 darab H-béta vonalon és környékén készült spektrumot analizálták.


Az NGC 5548 egy kb. V=13,3 mg-s galaxis az Ökörhajcsár csillagképben. Távolságát 245 millió fényévre becsülik. Nagyon szép, lentikuláris galaxis, alig felismerhető spirálkarokkal. Egy csillagkar leszakadni látszik a galaxisról, ami annak a jele lehet, hogy nem sokkal ezelőtt valamelyik másik galaxis elhaladt mellette és gravitációsan perturbálta a csillagok galaxisbeli mozgását, vagy éppenséggel nem sokkal ezelőtt ütközött egy másik galaxissal és egyesültek.

Az NGC 5548 magjában egy 65 millió naptömegűre becsült, nagyon nagytömegű fekete lyuk található  (ang. supermassive black hole, helyes fordítása tehát nagyon nagytömegű fekete lyuk).

Carl Keenan Seyfert amerikai csillagász listázta először azokat a galaxisokat, amelyek a megszokottnál fényesebb maggal bírnak, és amelyek emissziós vonalakat mutatnak színképükben. Ezeket Seyfert-galaxisoknak nevezik. Az eredeti, 12 ilyen tulajdonságokkal bíró galaxis egyike volt az NGC 5548.

Az összes galaxis kb. 10%-át teszik ki a Seyfert-galaxisok. Már 1908-ban felismerték (V. Slipher és E.A. Fath), hogy az NGC 1068 hat emissziós vonalat is mutat, de szisztematikus vizsgálatukat Seyfert kezdte el. Az itt látható emissziós vonalak eredetére az az elképzelés, hogy vagy a galaxis magjában lévő fekete lyukat körülvevő anyagbefogási korongról (akkréciós diszkről) származik, vagy pedig a fekete lyukat körülvevő térségből elinduló, erősen fókuszált sugárzás világít meg néhány távoli felhőcsomót és azok gerjesztődnek.

A széles emissziós vonalakról azt gondolják, az anyagbefogási korongról jön és a korong forgása szélesíti ki a vonalat (a korong felénk forduló része kékeltolódást, az elforduló vöröseltolódást mutat, egyébként a gyorsan forgó csillagok színképvonalai is ezért szélesednek ki). A széles emissziós vonalak gyakran mutatnak időbeli változást erősségüket tekintve a Seyfert-galaxisokban; a keskeny, éles vonalak időben jobbára állandóak, vagyis a fekete lyuktól távolabb, lassabban mozgó gázfelhőben keletkeznek. A széles vonalak kiszélesedésének mértéke felhasználható a korong forgásidejének becslésére, amiből a központi fekete lyuk fekete tömege megbecsülhető.

A Seyfert I galaxisok semleges és ionizált atomok széles megengedett vonalait (HI, HeI, He II), és keskeny, tiltott vonalakat (pl. OIII) mutat; a Seyfert II csak keskeny vonalakat mutat. Némelyik galaxis köztes állapotot képvisel, ezeket pl. Seyfert 1.5 -nek osztályozzák: néha: ezekben a széles vonalak éppen csak megjelennek, de nem olyan kifejlettek, mint a Seyfert I-ben.

A fentebb említett 1600 db spektrum analízise arra az eredményre vezetett, hogy a színkép 5700 napos periódussal (kb. 16 év) periodikusan ingadozik. Mindezt 43 évre kiterjedő adathalmazból mondják, tehát az eredmény megbízhatónak tűnik.

A színképei periodicitás oka lehet például:

– periodikusan behulló poros és pormentes felhők. Ha a csillagközi anyag szerkezete olyan, hogy e felhők egymást váltogatva hullanak be ilyen időközönként, akkor az anyagbefogás ,megnő és a diszk fényesebbé válik.

– a fekete lyuk kettőssége (két fekete lyuk keringene egymás körül a galaxis magjában). A két fekete lyuk egymás körüli keringése időben változó gravitációs mezőt jelent, ami az anyagbefogási korongot megzavarja, és oszcillációra készteti.

– árapályerők okozta csillagszéttépések: esetleg valamilyen csillagáram pont ilyen periódussal kering a fekete lyuk körül erősen elnyúlt, excentrikus pályán, így amikor közel jutnak a fekete lyukhoz, akkor a lyuk árapályereje számos csillagot széttép, ami felfényléssel jár.

– egy, a fekete lyuk körül keringő nagytömegű csillag, amelynek pályája nem a diszk síkjában van, ezért 32 éves keringésideje alatt kétszer: egyszer alulról felfelé, majd felülről lefelé keresztezi a diszket, anyagot ragad el róla, ami felfényléshez vezet.

Egyik magyarázatot sem találták meggyőzőnek alaposabb vizsgálat után, de tippjük szerint legjobbnak még az utolsó: egy, a korongon rendszeresen áthaladó csillag tűnik. Ez ugyanis összhangban állna a szintén kiterjedt röntgenmérésekkel is, az áthaladáskor ugyanis erős röntgensugárzást is várunk a korongból a csillagra hulló anyag gravitációs energiájának felszabadulása miatt. A szerző véleménye az, hogy ilyet nemcsak egy csillag, de akár egy kisebb nyílthalmaz is tud okozni.

Forrás:
http://arxiv.org/pdf/1606.04606v1.pdf

Seyfert-galaxisokról a VCSE-honlapján:
http://vcse.hu/tag/seyfert-galaxis/
http://vcse.hu/3c279-kvazar-gammasugar-esoje/

A Los Angeles-ben található Kaliforniai Egyetem (University of California, UCLA, USA) a napokban egy rendkívül érdekes meteoritot állított ki híres Meteorite Gallery-jában. A mintát kölcsönbe kapták Ken és Jill Eltrich-től.

A 30 x 25 x 12 cm méretű termetes kondritot jó pár évvel ezelőtt túrázás közben találták a kaliforniai Mojave-sivatagban. Eltrich elmondása szerint a túra alatt teljesen véletlenül lenézett a földre, és egy oda nem illő, érdekes mintázatú követ vett észre. Leginkább sziromra hasonlító mintázat borította a hátoldalát. Hazavitte, és a Google segítségével utánanézett, hogy mi lehet az, de nem talált semmi érdemlegest, így három évig az otthonukban maradt. Közben – mint értéktelent – ajtókitámasztónak is használták (sic!). Három évvel később Eltrich a követ bevitte egy Orange megyei térkép- és ásványboltba, ahol a tulajdonos azt mondta neki, hogy az akár egy meteorit is lehet, és javasolta, hogy vigye be Marvin Kilgorehoz, aki az Arizonai Egyetem Hold és Bolygólaboratórimának (Lunar and Planetary Lab) meteorit-kurátora. Kilgore azonnal látta miről van szó. Egy egyedien orientált,  szinte tökéletes alakú kondritról!

Egy évvel később Eltrich találkozott John Wassonnal, aki az UCLA meteorit gyűjteményének alapító kurátora, és Nick Gesslerrel, aki az UCLA-n a “Meteoritok” tárgy előadója. Utóbbi elmondta:

“Számos orientált meteoritot láttam már, de ez a kiváló kondrit az összes közül a legérdekesebb és legbonyolultabb mintázatot mutatja.” Az orientált meteoritokról kevesen tudják, hogy felszínük hullás közben a legkevésbé ablatálódik (vagyis a legkevésbé gőzölög el), mert a forró plazmacsatorna lényegében lamináris áramlással, optimálisan kevés anyagot olvaszt le róluk. Szinte csak a folyásnyomvonalak olvadnak le, az eredeti kúp alakból a lehető legtöbb megmarad.

A mintát Jason Utas, az UCLA kozmikus geokémia szakos végzős hallgatója is látta, aki nem mellesleg profi meteoritgyűjtő, és szerinte a kő “a világ legorientáltabb meteoritja, amit valaha találtak!”. Alakjában tükröződik “az időben megfagyott fizika”.

Eltrich ekkor kezdte csak felfogni, hogy mit is talált: “akár egy véletlenül talált lottó ötös szelvény!” mondta.

Közben jó pár komoly meteoritgyűjtő megkereste kecsegtető ajánlatával, de azt gondolta, hogy ha eladja, akkor az egy meteoritgyűjtemény féltve őrzött kincseként eltűnik az emberek szeme elől és senki nem látja hosszú-hosszú időre. Ezért úgy döntött, hogy kiállítási célból két évre kölcsönadja az UCLA Meteorite Gallery-nek, hogy minél többen láthassák élőben ezt a csodát.

A világ “legorientáltabb” meteoritjának találóan a “krizantém-kő” nevet adták és júniustól tekinthető meg az UCLA-n. Végezetül Eltrich elmondta, “nem vagyok meteorit vadász, de most már próbálok az lenni…”.

Valóban lenyűgözően szép, tankönyvszerű mintázatot mutató orientált meteoritról van szó és tényleg kiállításon van a helye.

(Daily Bruin, UCLA, California, USA, forditotta Kereszty Zsolt. Jason Utas képei)