Első alkalommal sikerült egy extragalaktikus, nagyon nagy tömegű fekete lyuk  (ang. supermassive black hole) legközelebbi környezetéről képet alkotni. Az áttörésnek számító eredményt az Event Horizon Telescope nevű rádiócsillagászati műszeregyüttessel érték el. Még soha nem “láttunk” fekete lyukat ilyen részletes felbontásban, és ennyire közel az eseményhorizontjához. A fekete lyukak kiemelkednek a sötétségből.

Nagy várakozás előzte meg az Eseményhorizont Távcsővel (Event Horizon Telescope) készült első felvételek és a vele kapott első eredmények közzétételét. Mi is írtunk már 2018-ban arról, hogy mire számíthatunk. A legelső képeket és eredményeket 2019. április 10-én tették közzé, mi ezeket a www.space.com alapján szemlézzük.

 

VCSE - A kutatók által kapott első fekete lyuk-sziluett. A kép az EHT-val készült az M87 extragalxis közepén található nagyon nagytömegű fekete lyukról. A 6,5 milliárd naptömegű fekete lyuk meghajlítja a mögötte lévő csillagok, csillagközi gáz fényét. A gyűrűn belül található üres terület a fekete lyuk sziluettje. Ez a nagyon nehezen megkapott kép a fekete lyukak létezésének eddigi legerősebb bizonyítéka. - Forrás: Event Horizon Telescope Collaboration
VCSE – A kutatók által kapott első fekete lyuk-sziluett. A kép az EHT-val készült az M87 extragalaxis közepén található nagyon nagy tömegű fekete lyukról. A 6,5 milliárd naptömegű fekete lyuk meghajlítja a mögötte lévő csillagok, csillagközi gáz fényét. A gyűrűn belül található üres terület a fekete lyuk sziluettje. Ez a nagyon nehezen megkapott kép a fekete lyukak létezésének eddigi legerősebb bizonyítéka. – Forrás: Event Horizon Telescope Collaboration

Fekete lyukak definíció szerint a térnek olyan tartományai, amelyből bentről kifelé semmi sugárzás vagy anyag nem távozhat el az objektum nagy gravitációja miatt. Arra gondolhatnánk, hogy ezért semmi, még a fény sem hagyhatja el a felszínüket, ezért nem lehet őket látni. De például a környezetükre kifejtett gravitációs hatásuk révén, vagy az általuk széttépett csillagok anyagának áramlása és sugárzása révén fel lehet őket fedezni. A Hawking-sugárzás pedig mégiscsak lehetővé teszi, hogy valami elhagyja a fekete lyukat. Leegyszerűsítve: ha egy fekete lyuk felszínén egy tömeg nélküli részecske éppen fénysebességgel kering (pl. egy foton), és energiája elég nagy (vagyis pl. a foton hullámhossza nagyon kicsi, frekvenciája nagy), akkor széteshet két részecskére, pl. egy elektronra és pozitronra. Ekkor az elektromos töltés megmarad. A párkeltés során a haladó irányba mutató lendület is megmarad, de keletkezhet egy erre merőleges komponens is mindkét részecskéhez. Ekkor pl. a pozitron befelé megy, az elektron kifelé, így ez a lendületkomponens is megmarad. Tehát valami nagy ritkán – pontosabban annak a valaminek egy része, példánkban a fele tömeg – elhagyhatja a fekete lyukat. Így akár egy fekete lyuk “világíthat” is. Értelmes dolog lehet ezért egy fekete lyuk “magnitúdójáról” beszélni. A Hawking-sugárzás azonban a legtöbb csillagászati fekete lyuk esetén rendkívül – végtelenül – gyenge, műszereinkkel nem érzékelhető, mert bőven a műszerek érzékenysége alatt marad. A fekete lyukakhoz legeslegközelebbi térből azonban jöhet fény és sugárzás, pl. a behulló anyag itt még – elvileg – észlelhető. (A Hawking-sugárzás léte nem mond ellent a fekete lyuk definiciójának, hiszen az nem a fekete lyuk belsejéből jön, ahonnét semmi nem jöhet ki, hanem a felszínéről, ami ugye nem belül van, hanem határfelület.)

Az Eseményhorizont Távcsőrendszer az M87-beli és a mi Tejútrendszerünkben lévő, Sagittarius A*-nak (Sgr A*) nevezett fekete lyukakat, illetve közvetlen környezetüket szeretnék megvizsgálni. Az M87-belire vonatkozó eredményeket 2019. április 10-én tették közzé sajtókonferencia keretében. A képek a fekete lyukak vizsgálatának egy fontos, új lépése, egy új vizsgálati lehetőség: egy egészen ismeretlen világ nyílik ki számunkra. Az eddig csak elméletek és spekulációk szintjén lévő elképzelések most észlelésekkel megerősítést nyerhetnek – vagy megcáfolhatják őket.

Az Eseményhorizont Távcsőben (EHT) több, mint 200 kutató dolgozik együtt. Némelyikük már két évtizede tagja a teljes glóbuszra kiterjedő együttműködésnek. A cél néhány közeli, nagyon nagy tömegű, galaxisok központjában található központi fekete lyuk sziluettjét és közvetlen környezetét rádióhullámhosszakon feltérképezni, és képet alkotni róla. Bár ez rádiócsillagászati kép, sok helyen fotónak nevezik (noha a fotó szót csak látható fénybeli képekre szokták sokszor használni). Az első észlelések ezzel a távcsőrendszerrel 2017 áprilisában történtek, az első adatfeldolgozási lépések 800 magos számítógépklaszteron 2017 decemberében estek meg, az első eredmények pedig 2019-ben kerültek közlésre.

Az első célpont az M87 (Messier 87) extragalaxisban lévő, 6,5 milliárd naptömegű behemót fekete lyuk volt. A másik célpont az Sgr A*, ami csak 4,3 millió naptömegű. Most csak az M87-ről szóló eredményeket és képet közölték. Az M87-beli központi fekete lyuk tőlünk mért távolsága 53,5 millió fényév, az Sgr A* csak 26 ezer fényévre található. Az Sgr A* látszó mérete olyan pici tőlünk nézve, “mintha egy narancsot néznénk a Holdon” mondta egy csillagász a space.com-nak.

VCSE - Az EHT rádiótávcsöveinek elhelyezkedése a Földön. - Forrás: Event Horizon Telescope Collaboration
VCSE – Az EHT rádiótávcsöveinek elhelyezkedése a Földön. – Forrás: Event Horizon Telescope Collaboration

Minden éjszaka kb. 1 petabájtnyi észlelési adat keletkezett, így az adatfeldolgozás egy évnél is hosszabb ideig tartott egy nagyméretű szuperszámítógépen. Például ekkora adatmennyiséget nem is lehetett az interneten átküldeni a rádiótávcsövektől az adatfeldolgozási helyre, különböző adathordozókon kellett fizikailag szállítani. Vagyis adathordózóra rámásolták, és azt a posta vitte. A hagyományos postaszolgáltatás még mindig gyorsabb ekkora adatmennyiség esetén, mint az internet a jelenleg elérhető legnagyobb sávszélességgel! A Déli Sarkon lévő távcsőrésztvevőtől például nem is lehetett addig elhozni az adatokat, amíg elég meleg nem lett a sarkvidéken.

Igazán izgalmas, hogy az M87-re az elméleti fizika, az általános relativitáselmélet nyomán számolt kép igen jó összhangban van a most elvégzett mérésekkel, így egyben az általános relativitáselmélet további bizonyítékának tekinthető. A szimulált fekete lyuk-körvonal (sziluett) és az anyagbefogási korong (akkréciós diszk) rádióhullámhosszak-beli kinézete összhangban van a mérttel. Ez ugyan megnyugtatónak hangzik, de ilyen erős gravitációs térben soha nem ellenőrizték korábban ilyen pontossággal az általános relativitáselméletet! Márpedig erős gravitációs térre konkurens elméletek is akadtak (vagy akadnak). Ahogy a kutatók egyike mondta: “A mérés párbeszéd a természettel”.

 

VCSE - Általános relativitásleméleti magnetohidrodinamikával szimulált fekete lyuk sziluett rádióhullámhosszakon. Az akkrációs diszkre a képen 45 fokos szögből nézünk rá (az egyenlítójéhez képest). A bal oldalon azért fényesebb a fekete lyuk által meghajíltott fény, mint ajobb oldlaon, mert a Doppler-fókuszálás miatta felénk közeledő anyag fényesedik, a távolodó elhalványodik. A központi fekete részben van a fekete lyuk. Előtte az akkréciós diszk egyes részei láthatók. - Forrás: Hotaka Shiokawa, https://www.cbc.ca/news/technology/black-hole-photo-1.5089403
VCSE – Általános relativitáselméleti magnetohidrodinamikával szimulált fekete lyuk sziluett rádióhullámhosszakon. Az akkréciós diszkre a képen 45 fokos szögből nézünk rá (az egyenlítőjéhez képest). A bal oldalon azért fényesebb a fekete lyuk által meghajlított fény, mint a jobb oldalon, mert a Doppler-fókuszálás miatt a felénk közeledő anyag fényesedik, a távolodó pedig elhalványodik. A központi fekete részben van a fekete lyuk. Előtte az akkréciós diszk egyes részei láthatók. – Forrás: Hotaka Shiokawa, https://www.cbc.ca/news/technology/black-hole-photo-1.5089403

 

Az M87 fekete lyukának EHT-képén az látszik, hogy a környezetből a fekete lyukba hulló gáz hogyan spirálozódik befelé. Ez az anyagbefogási (akkréciós) folyamat részleteiben nagyon kevéssé ismert, közelről soha nem láttuk. Pedig a fekete lyuk gravitációja által felgyorsított gázrészecskéket a lyuk mágneses tere fókuszálja, és ez hozza létre a megfigyelhető, a fekete lyuk környezetéből kilövellő nyalábokat (jeteket). A nyalábokban közel fénysebességgel mozog az anyag.

A képek analízisével a fekete lyuk forgását is lehet majd tanulmányozni, esetleg a forgásidőt megállapítani. Ezek természetesen közvetett mérések lesznek: a behulló anyag mozgására hathat a fekete lyukkal együtt forgó mágneses tere. Az is izgalmas kérdés, hogy egy központi, nagyon nagy tömegű fekete lyuk hogyan alakítja a galaxis fejlődését és viszont, illetve milyen hatással van erős gamma-, röntgen- és ultraibolya sugárzása a galaxisbeli életre. Ez különösen fontos akkor, amikor a fekete lyukba nagyobb mennyiségű anyag hullik be. Pl. ha egy csillag helyett egy egész nyílthalmazt nyel el, vagy egy másik, közelben elhaladó galaxis árapályereje csillagkeletkezési hullámot indít be. Ilyenkor nemcsak sok szupernóva lesz, de a fekete lyukba is több anyag hullik be, megnövelve az akkréciós korong tömegét és méretét a fekete lyuk körül. Ez erős sugárzási folyamatokat indít be. Jelenleg az Sgr A* inaktív a mi Galaxisunkban.

Későbbiekben az EHT eredményeit majd gravitációs hullámdetektorokéval lehet kombinálni, így még többet megtudva ezekről a rejtélyes, a galaxisfejlődésben és a galaktikus lakhatóságban fontos szerepet játszó objektumokról.

Egészen biztos, hogy az EHT eredményei a jövőben is izgalmasak lesznek. A mostani képek további analízise a következő hónapokban még újabb eredményeket ad majd. Érdemes követni az ismeretterjesztő oldalakat a legújabb fejleményekért.

Videós magyarázat a képről (angolul).

További cikkek fekete lyukakról a VCSE honlapján itt.
Ez nem a cikk végleges változata, a benne előforduló hibák javítás alatt állnak!

A fekete lyukakat tömegük szerint három kategóriába osztják:

– kistömegűek, amelyek II-es típusú szupernóvarobbanásokban keletkeznek, az így felrobbant csillagok magjának a maradványai, és tömegük 3,2 naptömegtől pár tíz naptömegig terjedhet;

– a nagyon nagytömegűek (vagy szupernagytömegűek), amelyek tömege pár millió és pár milliárd naptömeg között van, és galaxisok centrumaiban foglalnak helyet: a környező csillagok bekebelezésével híztak ekkorára.

A harmadik kategóriát a néhány ezer naptömeg körüli fekete lyukak képviselik, amelyeket közepes tömegűeknek is neveznek, és eredetüket homály fedi. Talán harmadik populációs csillagok összeomlása hozta létre őket (ezek a csillagok a legkorábban született csillagok egy-egy galaxisban, rögtön a galaxis kialakulása után jöttek létre; ekkor még a galaxisok annyira fémszegények voltak, hogy akár 1000 naptömegű csillagok is létezhettek, de ma már csak 120 naptömeg körül van a lehetséges csillagtömeg felső határa éppen a fémekkel való bedúsulás miatt).

Az ismert közepes tömegű fekete lyukak száma csekély, és egyesek még azt is kétségbe vonják, hogy valóban léteznek, szerintük csak az észlelések félremagyarázásáról van szó.

Egy ma megjelent tanulmány szerint (http://arxiv.org/abs/1512.04825) az M51 északi spirálkarjában van egy extrém fényes (ang. “ultraluminous”) röntgenforrás, amelynek mért tulajdonságai vagy egy anyagbefogó, közepes tömegű fekete lyukra utalnak, vagy egy kettős-rendszerbeli neutroncsillagra, ahol a társától szipkázz el anyagot a neutroncsillag. Az erős röntgensugárzás a fekete lyuk vagy a neutroncsillag körüli anyagbefogási korongból (akkréciós diszk) jöhet. Az XMM-Newton, a Chandra és a NuSTAR műholdak röntgenadataiban erős és gyors változásokat fedeztek fel a röntgenfluxusban. Vagy egy 1600-3500 naptömeg közötti fekete lyuk környezetében végbemenő normál ütemű anyagbefogás, vagy egy neutroncsillagra hulló, szokatlanul nagy arányú, de fizikailag még lehetséges anyagátadás lehet az észlelt röntgenfluxusnak és változásainak az oka. A nehézségeket jól jellemzi, hogy a neutroncsillag felső tömeghatára 3,2 naptömeg körül van – vagyis a forrás vagy kisebb tömegű (1,4-3,2 naptömegű) neutroncsillag vagy egy közepes tömegű (1600-3500 naptömegű) neutroncsillag, amelyek két nagyon különböző tömegbecslést és fizikai természetet jelentenek…

   
Az APOD felvételén egy művészi animáció látható, amely bemutatja egy csillag és egy fekete lyuk találkozását a jelenlegi asztrofizikai ismereteinkre alapozva.

Amikor egy csillag túl közel közel kerül egy fekete lyukhoz, az intenzív árapályerők darabjaira szedik szét a csillagot. Ennek során az árapályerők a csillagközi törmelék egy részét kifelé repítik, míg a maradék anyag belezuhan a fekete lyukba.  Ez a jelenség okozza a különböző röntgenkitöréseket, amelyek akár több évig is eltarthatnak. A NASA Chandra röntgenűrtávcsővével gyűjtött adatok alapján, egy kirakós játék darabkáinak összerakásához hasonlóan a kis részletekből felépítve rekonstruálták a jelenséget. A művészi animáción az ASASSN-14li, látható, amely PGC 043234 galaxisban található.  A PGC 043234 galaxis kb. 290 millió fényévre található Naprendszerünktől. A jelenséget a teljes égboltra kiterjedő automata szupernóva kereső projekt (ASAS-SN)  során fedeztek fel 2014. novemberében.  A kutatók remélik, hogy a további felfedezések során nyert adatok és a ASASSN-14li megfigyelésével nyert adatok segítségével modellezni tudják a fekete lyukak hatásait a környezetükre.

Az árapályerők miközben szétszakítják a csillagot, a csillagot alkotó anyagot szálak formájában átszippantják. A legvégén ezek a gáznemű anyagból álló szálak beleolvadnak a fekete lyuk körül kialakult anyagkorongba, miközben nagy mennyiségű röntgen sugárzást bocsájtanak ki.

Az eredeti videó elérhető és letölthető : http://svs.gsfc.nasa.gov/goto?12005

További részletek olvashatók a NASA weboldalán.

Az APOD mai felvételén egy animáció látható, amely egy kettős fekete lyuk egymásra, és a mögöttük látszó csillagmező látványára gyakorolt hatását mutatja be.

 

 

Két, egymás körül keringő fekete lyuk kölcsönhatásának kiszámítása igen érdekes és sok kihívást tartalmazó fizikai-matematikai feladat. A fenti animáció ugyanazon kettősrendszerbem lévő két fekete lyuk utolsó három keringését mutatja. A fekete lyukak tömeg aránya 1:3 . A két fekete lyuk egyesülésének részletes leírását itt lehet megtekinteni : Taylor et. Olvasd tovább

Az APOD mai felvételén egy különleges „esőt” láthatunk.

 

 


 

Ha a gamma-sugarakat esőcseppeknek képzelnénk el, akkor ilyen képet kapnánk egy fekete lyukról. Ezt a gamma-sugár-esőt a Fermi Gamma-ray Space Telescope rögzítette 2015. június 14 – június 16. között.

Ezeknek a Fermi-űrteleszkóp által detetktált gamma-fotonoknak az energiája elérte az 50 milliárd eV-ot (50 GeV). Olvasd tovább