A Juno a NASA egyik űrszondája, 2011. augusztus 5-én indították útjára Cape Canaveral-ből, és 2016. július 4-én, tegnap érkezett meg küldetése célpontjához, a Jupiterhez.
Poláris pályán fog keringeni majd a Jupiter körül, azaz elrepül északi és déli sarka felett rendszeresen.
Feladata elsősorban a Jupiter gravitációs terének feltérképezése, a mágneses terének és magnetoszférájának sarki régióinak vizsgálata.
A Jupiter belső szerkezetét – bármilyen meglepő is – alig ismerjük. Még azt sem tudjuk, van-e szilárd, kőzetekből vagy fémből álló magja, és ha igen, mekkora. Korábban kiadott könyvekben biztosra vették a szilárd vagy fémes mag létezését, az utóbbi 10 év tanulmányai azonban alaposabb vizsgálat alapján arra jutottak, hogy nem tudjuk, van-e a Jupiternek kőzetmagja, vagy fémes magja… A különböző szerzők között akad, aki védi a korábbi eredményeket, mások szerint egyáltalán nincs magja, és a két álláspont közti köztes vélemény (van, de kisebb, mint korábban gondolták) is előfordul. A Jupiter gravitációs terének feltérképezéséből majd el lehet dönteni a kérdést, a gravitációs terét ugyanis nem egyszerűen csak a Jupiter tömege, hanem belső tömegeloszlása, koncentrációja is meghatározza.
Az űrszonda neve a görög-római mitológiából ered, Jupiter feleségét hívták Junonak. A mitológiában Jupiter egy hatalmas felhőtakarót eresztett maga köré, elrejteni rossz tulajdonságait és dolgait, de Juno képes volt átpillantani a rejtőfelhőkön és felfedni Jupiter valódi természetét. Az analógia nyilvánvaló: a Juno űrszondától is a Jupiter belsejébe való pillantást várunk gravitációs tere feltérképezésével… (A Juno egyben a JUpiter Near-polar Orbiter-nek is a rövidítése.)
A Jupitert korábban tudományos vizsgálatok céljéból a Pioneer-10, -11 (1972-ben, ill. 1973-ban), a Voyager-1 és -2 (mindkettő 1977-ben) űrszondák látogatták meg, de mind elrepült mellette, majd 1995-2003 között a Galileo űrszonda keringett és működött körötte. Így a Juno csak a második Jupiter körül keringő űrszonda. Az Ulysses napkutató űrszonda (1990-ben), a Cassini-Huygens (1997-ben) és a New Horizons (2006-ban) szintén elrepült a Jupiter mellett, de akkor a cél nem tudományos vizsgálatok végzése volt, hanem a Jupiter gravitációs erőterének kihasználása volt, hogy hintamanőverrel felgyorsuljanak és más pályára álljanak.
A Juno energiaellátását három szárnyra szerelt napelemtáblák biztosítják. Ezek a valaha épített legnagyobb napelemtáblák, amiket bármelyik bolygókutató űrszonda megkapott. A Jupiter ötször messzebb van a Naptól, mint a Föld, ezért huszonötször kevesebb napenergia éri ezeket a napelemtáblákat időegység alatt, mintha a Juno a Föld körül keringene. Ezért is kellenek jó nagy napelemtáblák. Korábban a Pioner-10, -11, Voyager-1, -2, de az Ulysses, Cassini-Huygens, New Horizons és a a Galileo is radioaktív termoelektromos generátort használt.
Az indulás után két évvel, 2013-ban egy Föld melletti elrepülés gyorsította fel a Junot. Két 53 nap keringésidejű fordulatot tesz majd a Jupiter körül megérkezése után, idén októberben ismét begyújtja majd rakétáit, és 14 napos keringésidejű, poláris pályára áll majd a Jupiter körül. 37 keringésre tervezik az élettartamát, ami mindössze 20 havi működést jelent: 2018. februárjáig fog regulárisan működni. Utána a Jupiter légkörébe léptetik és ott elég, hogy véletlenül se eshessen később valamelyik Jupiter holdra, vagy ha egy meteorit eltöri, a darabok ne hullhassanak oda. Ez ugyanis azzal a veszéllyel járna, hogy biológiailag beszennyezi (a Földről rákerült az építés során valamennyi mikroba), és az a Jupiter egyes holdjainak esetleges életét megzavarja, megbetegíti, vagy egyáltalán: az ott kialakult életet megzavarhatja, ha egyáltalán van ott valami. (Ha nincs, akkor meg nem akarjuk beszennyezni, nehogy a saját koszunkkal megzavarjuk a későbbi méréseket!) Infravörös és mikrohullámú tartományban működő műszerei a Jupiterről érkező hő mennyiségét is mérik majd. (A Jupiter gravitációsan összehúzódik, ezért több energiát bocsát ki, mint amennyit a Naptól kap! Ennek pontos megmérése az összehúzódás pontos mértékét, ütemét, és a belső anyagi összetételét segít meghatározni.)
A Juno teljes költségvetése 700 millió USA-dollár volt eredetileg, de 2011-re ez 1,1 milliárdra nőtt. Ez összemérhető azzal, amit az ESA a PLATO-ra szán (kb. 850 millió euró), ez közepes méretű és költségvetésű űrmissziónak számít.
A Junón van egy magnetométer a mágneses tér feltérképezésére, a JIRAM közeli infravörös színképelemző készülék (2-5 mikrométer között) az 50-70 km mélyen lévő rétegek észlelésére; az MWR mikrohullámú radiométer (sugárzásmérő), 600 MHZ és 22 GHz között több frekvencián méri majd a Jupiter rádiósugárzását; a GS gravitációs műszer, ami valójában egy rádióadó, amellyel a Juno sebességét lehet mérni. A rádióadó hullámai ugyanis kék- és vöröseltolódást szenved, ahogy az űrszonda majd lelassul és felgyorsul a Jupiter gravitációs erőterének változásai miatt. Egy JEDI névre keresztelt részecskeszámláló, egy Waves névre hallgató, a Jupiter sarki fényeinek rádiósugárzását mérő műszer, egy UVS jelű, ultraibolya spektrográf is el van helyezve a műholdon. Hogy a nagyközönség igényeit kielégítsék, a JCM névre hallgató, látható fényben működő kamera is felkerült a Junóra, ez az egyetlen képalkotó eszköz rajta. De csak hét keringésen át fog működni, mivel a Jupiter erős mágneses és részecskesugárzási tere tönkre fogja tenni. A cél most nem a szép képek gyártása, hanem a Jupiter belsejének megismerése.

A Földön vulkanizmus útján új szigetek keletkeznek a tengerben, tavak tűnnek el a globális felmelegedés következtében, és más gyors változások is vannak a földrajzunkban. Más bolygók felszíne nagyon állandó, csak néha alakul ki egy-egy új kráter kisbolygó becsapódás következtében, esetleg eltüntetve régebbi krátereket.

A Titán változékony tava, hulláma, vagy más jelensége? Kép forrása: Cassini űrszonda


A Szaturnusz Titán nevű holdjának felszínén azonban tavak vannak, a holdnak pedig erős légköre van. A Titán tavai és folyói főképp metánból és más szénhidrogénekből állnak. A Szaturnusz rendszerében keringő Cassini űrszonda igen gyakran mérte fel a Titán felszínét radarjával. A mellékelt képsorozaton lehet látni, hogy valami a Titán felszínén 2013-ban megjelent (2007-ben még nem volt ott), 2014-ben még ott volt, de alakja-kinézete megváltozott; 2015-re az objektum eltűnt. Az alakzat hossza 20 km volt maximálisan. Nem világos, miféle alakzat ez: valamilyen geohidrodinamikai aktivitás, elolvadó jéghegy, vagy egy vízesés, amely amikor működött, esetleg habhullámokat keltett, vagy egy tavacska óriásit hullámzott, de most pont nincs ott vihar, amikor nem látjuk.

2017-ben megint lesz lehetőség e terület radarképeinek elkészítésére, lehet tippelni, mit látunk majd ott…

2016. január 11-én publikálta a NASA a Cassini küldetés weboldalán az alábbi  felvételt.

VCSE - A rendkívüli Szaturnusz - NASA, Cassini
VCSE – A hatalmas Szaturnusz – NASA, Cassini

A képet nézve nem lehet nem észrevenni a bolygó hatalmas méretét. A kép jobb alsó sarkában látható 1062 km átmérőjű Tethys hold eltörpül a Szaturnusz  mellett. Olvasd tovább

Az APOD mai felvételén Martin Pugh felvétele látható a Futó Csirke (IC 2944, IC 2948) ködről.

VCSE - Mai kép - Futó Csirke-köd - Martin Pugh
VCSE – Mai kép – Futó Csirke-köd – Martin Pugh

A Futó Csirke ködről további információkat olvashatunk és egy kitűnő felvételt tekinthetünk meg, Éder Iván weboldalán.

VCSE - IC 2944 - http://www.pampaskies.com/
VCSE – IC 2944 – http://www.pampaskies.com/

A fent látható felvétel hidrogén alfa tartományban készült az IC 2944-ről. A kép középső részén láthatjuk a névadó “Futó Csirkét”. A felvétel eredetije az argentin asztrofotósok felvételeit bemutató  PampaSkies  weboldalon található.

Az APOD mai képe a NASA New Horizons küldetésének 2016. január 14-én publikált képe a Plutoról.

VCSE - Wright hegység egy lehetséges jégvulkán - NASA, New Horizons
VCSE – Wright-hegység: egy lehetséges jégvulkán – NASA, New Horizons

A felvételeket 2015. július 14-én készítette a New Horizons űrszonda, amely ekkor megközelítőleg 48000 km távolságban volt a törpebolygó felszínétől. A kép felbontása 450 m/pixel. A felvételek tanulmányozása során a kutatók két lehetséges jégvulkánt (kriovulkánt) fedeztek fel.

Olvasd tovább