VCSE - A téridő-utazás furcsaságai - Gesztesi Albert
VCSE – A téridő-utazás furcsaságai – Gesztesi Albert

Az ember kíváncsi természetű. Ez így van jól, ez viszi előre a fejlődést, termékenyíti meg a tudományos kutatást. Ehhez kalandvágy is társul. Kíváncsi, hogy mi van folyó, vagy a hegy túlsó oldalán, ezért hát elmegy és megnézi. Kíváncsi volt, hogy mi van a Föld túlsó oldalán, hát hajóra szállt és felfedezte a távoli földrészeket. Kíváncsi volt, hogy mi van a Hold túlsó oldalán. Űreszközt szerkesztett és megnézte. Azóta már a saját szemével is láthatta, hiszen az Apollo űrrepülések alkalmával sokszor megkerülték kísérőnket.

Az ember arra is kíváncsi, hogy milyenek a távoli csillagok, vagy azok bolygói. Természetesen ma még elérhetetlen számunkra egy csillagközi űrutazás, de megtanultuk, hogy soha nem szabad azt mondani valamire, hogy soha. Talán, majd egyszer… Sok évszázad múlva? Talán.

VCSE - 1g, középponti irányú gyorsulás létrehozása egy forgó tóruszban - Gesztesi Albert
VCSE – 1g, középponti irányú gyorsulás létrehozása egy forgó tóruszban – Gesztesi Albert

Ebbéli vágyainkat a tudományos fantasztikus (sci-fi) irodalomban éljük ki. Számtalan jobbnál jobb könyv és novella, az utóbbi időben egyre több látványos, izgalmas film született e témában. Hogy csak a legismertebbeket említsem: ilyen a Star Trek, vagy a Star Wars (Csillagok háborúja) sorozat.

Nem tudom, mások hogy vannak ezzel, de én nézem, nézem és valamit nagyon nem értek. Több dolog is furcsa. Tudom, hogy ez egy „mese”, de mégis! Hatalmas robbanások tarkítják a látványt, és hallom is a robbanások dübörgését. Miért hallom? Az űrben (vákuumban) nem terjed a hang! Na, de ez a legkevesebb.

A fantasztikus filmekben fantasztikus sebességű űrhajókkal röpködnek egyik csillagtól a másikig, egyik bolygótól egy másikig, majd pedig vissza. És mi van ilyenkor az idődilatációval? Az „ikerparadoxonnal”? Persze én is élvezem a filmeket, csak kissé mosolygok a bajuszom alatt…

Látom, hogy ott áll Kirk kapitány a USS Enterprise fedélzetén, kezében egy pohár Romulan üdítővel, ami nem ömlik ki. Miért nem? Mert a fedélzeten 1 g gravitáció van, nem súlytalanság! (1 g a Föld felszínén érvényes gravitációs gyorsulás. Értéke 9,81 m/s×s. Hogy ellenállunk ennek a gyorsító erőnek, ez okozza a súlyunkat.) A világűrben viszont „súlytalanság” van, azaz vagy nincs gravitációs gyorsító erő, vagy nem áll vele szemben más erő. Ez a helyzet a Föld körül keringő űrállomáson is. Láthatjuk, hogy a Nemzetközi Űrállomás belsejében súlytalanul „lebegnek” a tárgyak és az űrhajósok. Nem azért, mert nem hat rá a Föld gravitációja – hiszen a nélkül elrepülnének a végtelenbe – hanem, mert folyamatosan és akadály nélkül zuhannak bolygónk középpontja felé. Rövid időn belül le is esnének, csakhogy van úgynevezett érintő irányú sebességük is, ami kör- vagy ellipszispályára kényszeríti őket.

Csubakka és Han Solo teljes természetességgel mozognak a Millenium Falcon fedélzetén, csakúgy, mint Darth Vader és a többi szereplő a Halálcsillagon. Miért van ezeken a helyeken a földihez hasonló gravitáció? Hogyan állítják elő? Ezek olyan megválaszolatlan kérdések, amelyek talán eszébe sem jutottak a rendezőknek, vagy ha igen, hát ügyesen elkerülték a választ, mert a sztori szempontjából nem tartották lényegesnek.

VCSE - Élet a tóruszban 1g imitált
VCSE – Élet a tóruszban 1g imitált “nehézségi erőnél”. – Gesztesi Albert

Pedig lényeges! Elő lehet állítani gravitációs hatást a világűrben, mégpedig gyorsítással. Ülök a számítógép előtt a székben, nem lebegek súlytalanul, mert a Föld tömege 9,81 gyorsító erőt gyakorol rám. Azt tanultuk fizikából, hogy ha egy testre erő hat, akkor az gyorsuló mozgást végez. Ha szoba padlója és székem nem állna ellent ennek az erőnek, akkor egyre nagyobb sebességgel belezuhannék a Föld középpontjába. De szerencsére ellenáll, így nyugalomban vagyok, de ami kevésbé szerencsés, hogy 80 kg-ot mutat a mérleg, amikor ráállok.

Szóval, itt a Földön, vagy a Holdon, esetleg bármilyen más bolygó felszínén éreznünk kell a súlyunkat, ha nem is mindenhol egyformát. De térjünk vissza a világűrbe, egy űrállomás fedélzetére! Miképpen lehetne ott tartósan „mesterséges” gravitációt kelteni?

Az egyik megoldást először 1955-ben Wernher von Braun az amerikai holdprogram megvalósítója, valamint Willy Ley csillagász javasolták. Elképzelésük szerint egy hatalmas tórusz (inkább nevezzük keréknek) alakú űrállomás belsejének külső falán létre lehetne hozni 1 g gyorsulást, ha megfelelő sebességgel forogna. Ehhez kb. 500 méter átmérőjű „kerék űrállomásra” lenne szükség, amely fél percenként tenne meg egy fordulatot. A forgó rendszerben fellépő centrifugális erő jelenti itt a „hamis” gravitáció képzetét. (2. ábra)

Az ötletet továbbfejlesztve fantasztikus tervek születtek óriási tórusz alakú űrállomásokra, amelynek belső felületén egész városok, parkok, folyók, mezőgazdasági területek vannak. (3. és 4. ábra)

VCSE - Élet a tóruszszerű űrállomásban - Gesztesi Albert
VCSE – Élet a tóruszszerű űrállomásban – Gesztesi Albert

Ami lényeges: ismerjük fel, hogy fizikailag ugyanarról van szó! A gyorsulásról. Egyik esetben egy égitest tömegvonzása, másik esetben pl. egy forgó rendszer centrifugális gyorsulása okozza a súlyerőt.

Nagyon hosszú távú űrutazásnál szervezetünk számára az az optimális állapot, ha állandóan a földi gravitációt érzékelhetjük. Ennek egyik megoldása az lehet, hogy űrhajónk állandóan 1g-vel, azaz 9,81  –tel gyorsul. Végezzünk egy gondolatkísérletet, hogy mi következne ebből! Azért „gondolat” kísérlet, mert ilyen állandó gyorsulást sohasem fogunk elérni (tudom, tudom, sohase mondjuk, hogy soha! Inkább azt, hogy ma még irreális.)

Szóval: a Földről induló űrhajónkkal ebben az esetben a Holdat másfél óra alatt érnénk el. 80 óra múlva elsuhannánk a Jupiter mellett, de akkor már 2800 km/s lenne a sebességünk, vagyis a fény sebességnek csaknem 1 %-a!

Vérszemet kaptunk! Tegyünk egy látogatást a Naphoz legközelebbi csillag, az  Centaurinál, ami 4,3 fényévre van tőlünk! Gyorsítsuk űrhajónkat mindvégig 1g-vel! Ha az űrhajó gyorsult fél útig, majd ugyancsak 9,91  „gyorsulással” fékezett, aztán megfordult és hasonló módon jutott vissza a Földre, akkor az utazás a földi megfigyelők számára 9 évig tart, az űrhajó idejében pedig mindössze 3 és fél év telt el. Közben az űrhajó maximális sebesség elérte a fénysebesség 95 %-át!

Menjünk még messzebbre! A Tejútrendszer középpontja kb. 28 ezer fényév távolságra van. „Fantasztikus” űrhajónkkal mindössze 20 évbe telik megtenni ezt a távolságot, miközben a Földön 28 000 év telik el! Menet közben űrhajónk a fénysebesség 99,9999998 %-ára gyorsult!

Az Androméda-galaxist (M31), melynek távolsága 2 537 000 fényév 28 és fél év alatt lehetne elérni, de ekkor már az űrhajó a fénysebesség 99,99999999997 százalékával haladna! Megvalósításához 100 milliárd × 120 milliárd megajoule energiát kellene felhasználni, kilogrammonként! Azt hiszem, most tényleg kimondhatom, hogy lehetetlen.

Akármennyi ideig gyorsítom az űrhajót, a fénysebességet soha nem érheti el. Ez a speciális relativitás elméletből következik. Egy nyugalmi tömeggel rendelkező űrhajó minél jobban megközelíti a fénysebességet, a tömege exponenciálisan növekedni kezd, így a gyorsításához is egyre több energiára van szükség. A fénysebességnél tömege végtelen naggyá válik, vagyis végtelen nagy energia tudná csak gyorsítani. Képletben:

Itt  a nyugalmi t0meg,  a relativisztikus tömeg, v az űrhajó sebessége és c a fénysebesség.

Még egy nagyon fontos dolog: a sebességeket másképpen kell összeadni, mint ahogy az iskolában tanultuk! Ha például a fénysebesség 70 %-ával haladó űrhajóból a menetirányban fénysugarat bocsátunk ki, akkor a két sebességet (az űrhajóét és a fénysugárét) nem adhatjuk egyszerűen össze:

E helyett a speciälis relativitás elmélet szerinti következő képletet kell alkalmazni: (5. ábra és 6. ábra):

Itt mindjárt hozzáteszem, hogy a   képlet kis (hétköznapi) sebességek esetében kiválóan használható, hiszen ilyenkor az 5-ik és 6-ik ábrán szereplő képletek nevezője gyakorlatilag 1 lesz (7. ábra).

VCSE - Sebességösszeadás a speciális relatiitáselméletben, ami a mérési eredmények szerint helyesen írja le a valóságot - Gesztesi Albert
VCSE – Sebességösszeadás a speciális relatiitáselméletben, ami a mérési eredmények szerint helyesen írja le a valóságot – Gesztesi Albert

 

Nézzünk egy másik példát (6. ábra)! Haladjon rakétánk 240 000 km/s sebességgel, ez a fénysebesség 80 százaléka = 0,8c. Ha e rakéta fedélzetéről menetirányban egy másik rakétát indítunk, mondjuk fél fénysebességgel (0,5c), akkor mi fog történni? Összeadva a két sebességet, túlléphetjük-e a fény sebességét? Ugye, nem! Egyszerűen csak a fenti, relativisztikus sebesésgösszeadási képletbe kell behelyettesíteni, és azt kapjuk, hogy az eredő sebesség mindössze a fénysebesség ~93%-a lesz.

VCSE - Speciális relativitáselméleti sebességösszeadási példa - Gesztesi Albert
VCSE – Speciális relativitáselméleti sebességösszeadási példa – Gesztesi Albert
VCSE - Kis sebességeknél alig van eltérés a klasszikus és a relativisztikus sebességösszeadási törvény között, hogy elegendő a köznapi életben a klasszikus formulát használni. - Gesztesi Albert
VCSE – Kis sebességeknél alig van eltérés a klasszikus és a relativisztikus sebességösszeadási törvény között, hogy elegendő a köznapi életben a klasszikus formulát használni. – Gesztesi Albert

És mi a helyzet az idővel? A földi megfigyelő és az űrhajó fedélzeti ideje más ütemben telik.

A szemléletesség kedvéért nézzük meg a 8. ábrát és tekintsük az A és B űrhajót. Mindkettő a Földön áll, nyugalomban. Mindegyiket felszerelték egy „fényórával”, azaz 300 000 km-es kar végén egy-egy tükröt helyeztek el. Az órák abszolút szinkronban járnak: az űrhajókból kibocsátanak egy fényvillanást (fényimpulzust). Ez a fény elmegy a tükörig, majd visszaverődve az űrhajók technikusai detektálják. Pontosan két másodperc telt el. A két óra szinkronban jár, 2 másodpercenként „ketyeg”. Most induljon el a B űrhajó és haladjon egyenletes v sebességgel! Az A űrhajóban ülők azt látják, hogy most a B űrhajó órájának lassabban kell járnia, hiszen az ő fénysugaruk nem 300 000 km, hanem annál többet, a háromszög átfogójának megfelelő (c×t) utat fut be! A B űrhajóban ülők persze erről tudomást sem vesznek, ők csak azt látják, hogy továbbra is az űrhajójukhoz rögzített, tőlük 300 000 km-re lévő tükörről kapják vissza a jeleket. Amennyiben a megfelelő adatokkal operálunk és felírjuk a pithagorasz egyenletet, majd rendezzük, akkor éppen ama bizonyos Lorentz összefüggéshez jutunk. Ez nem jelent mást, mint, hogy az egymáshoz viszonyítva mozgó rendszerekben az idő, különböző sebességgel telik. Igen ám, de minden relatív! A fenti példánál maradva; a B űrhajóban tartózkodók is megítélhetik úgy a helyzetet, hogy ők vannak nyugalomban, és az A űrhajó mozog hozzájuk képest v sebességgel. Kinek van itt igaza?

VCSE - Időmérés a relativitáslméletben. Ezt a newtoni mechanika nem elemezte ilyen kifinomultan. - Gesztesi Albert
VCSE – Időmérés a relativitáslméletben. Ezt a newtoni mechanika nem elemezte ilyen kifinomultan. – Gesztesi Albert

Addig nincs semmi probléma, amíg két olyan inerciarendszerről beszélünk, amelyek egymáshoz képest különböző sebességgel mozognak. Olyan vonatkoztatási rendszert nevezünk inerciarendszernek, amelyben Newton első axiómája érvényesül: a magára hagyott test egyenesvonalú, egyenletes mozgást végez. Ilyen lehet két űrhajó is. Akármelyikről figyelnénk meg a másikat, azt látnánk, hogy az órák eltérő ütemben járnak.

Ikerparadoxon

Ismert fizikai furcsaság a sokat emlegetett ikerparadoxon. Lényege, hogy ha egy ikerpár egyik tagja a Földön marad, a másik elutazik egy űrhajóval távoli csillagok felé, majd onnan visszatérve azt tapasztalja, hogy az itt maradt ikertestvére sokkal öregebb nála. Mintha az űrhajóban lassabban múlt volna az idő, mint itt a Földön. Hogyan lehetséges ez, hiszen éppen az előbb azt magyaráztam, hogy a mozgás relatív.

Jelen esetben azonban nem egyenértékű! Míg az egyik „nyugalomban” van, a másik gyorsul.

VCSE - Időmérés és az idő
VCSE – Időmérés és az idő “telése” a relativitáselméletben. – Gesztesi Albert

Nézzünk egy űrhajót O pontból B pontba szeretne repülni, de közben meglátogatja C csillagot! (9. ábra). Ha az euklidészi koordináta rendszerben gondolkozunk (bal oldali rajz), akkor az űrhajó szemlátomást hosszabb utat jár be, mintha egyenesen (az Y tengely mentén) jutna el a B pontba.

Egészen más a helyzet, ha nem az euklidészi térben, hanem Einstein téridejében gondolkozunk. Ebben az esetben a Lorentz-geometria az érvényes, amiben a rakétánknak nem egyszerűen útja, hanem „világvonala” van. (felhívom a figyelmet, hogy míg a bal oldali ábrán X,Y koordináta szerepel a jobb oldalin X,T). Persze itt is látható, hogy ha az űrhajó helyben marad, akkor egy idő után eljut a B helyre az IDŐtengelyen. Ez a helyben maradó űrhajós világvonala. Ugyanabba a B pontba (a jövőbe) az O-C-B görbe világvonal mentén jut el a másik űrhajóban utazó ikertestvér. Ezen a másik világvonalon eltelt idő különbözni fog a helyben maradó testvére sajátidejétől. A Lorentz-geometriában két adott esemény között egy görbe világvonal rövidebb mint az egyenes világvonal, mindegyik hosszúságát a szereplők sajátidejében mérve.

Az egyenes világvonalnál nincs probléma. A görbe világvonal esetében elveszítjük azt a lehetőséget, hogy egyetlen inerciarendszerrel számolhatunk az egész görbe mentén. A görbe világvonalhoz pontonként a lokális és momentán inerciarendszerek népes sokaságát kell egymás után hozzárendelni, hogy az elemi szakaszon alkalmazni lehessen a képletet (az ábrán feltüntetett dt-dx háromszög). A görbét osztópontokkal tetszőlegesen kis szakaszokra lehet felosztani, majd ezeket integrálni kell ahhoz, hogy az űrhajó sajátidejét megkapjuk.

Az ikerparadoxon feloldásánál tehát a gyorsulás a lényeg. Míg az egyik esetben, a helyben maradó testvér esetében valóban inerciarendszerről beszélhetünk, addig az űrhajózó testvére állandóan gyorsításokat végez: az induláskor, a visszaforduláskor és a megérkezéskor.

VCSE - A 67P/Csurjumov-Geraszimenko (IAU-nevén Churyumov-Gerasimenko) üstökös felszínén megfigyelt gejzír - ESA, Rosetta
VCSE – A 67P/Csurjumov-Geraszimenkó (IAU-nevén 67P/Churyumov-Gerasimenko) üstökös felszínén megfigyelt gejzír – ESA, Rosetta

A 2017. november 6-án a Nap Csillagászati Képének (APOD) választott felvételt az ESA (Európai Űrkutatási Ügynökség) Rosetta űrszondája készítette. A kép közepén egy kb. 10 méter magasságra lövellő gejzír látható.

Az üstökösök, ahogy pályájukon egyre közelebb jutnak a Naphoz, egyre több hőt kapnak tőle, ami felmelegíti őket. Az üstökös belsejében a jég elkezd szublimálni, gőzzé válik, és feszíti a környezetében lévő kőzetrétegeket. Ahol gyengébb, ott áttöri, és az anyag a földi gejzírekre hasonlító kilövellésben eltávozik. Eközben a megtört kőzetből és esetleg a belsőbb rétegekből kisebb-nagyobb kőzetdarabokat is magával visz. A gejzírek csak átmeneti ideig – órákig, napokig, hetekig – működnek. Időről időre újabb gejzírek nyílhatnak meg, miközben a régiek bezáródnak vagy kiürülnek.

Az eltávozó és lassan szétoszló gáz a Nap fényét visszaveri: ezt látjuk kómaként, illetve, ahogy a gáz a kezdősebessége függvényében eltávozik és lemarad a pálya mentén, üstököscsóvaként.

Az eltávozó kőzetanyag többnyire meteoritikus méretű, és táplálja az üstökös pályája mentén kialakuló meteorfelhőt. A leszakadt kőzetdarabokat meteoroidnak hívjuk. Ha a meteorfelhő találkozik a Földdel, szép meteorokat, netán tűzgömböket is megfigyelhetünk. A nagyobb tűzgömbökből akár a földfelszínre is hullhat anyag, ezeket meteoritnak nevezzük.

A fenti kép elemzése a Monthly Notices of the Royal Astronomical Society folyóiratban jelent meg, ennek közérthetőbb kivonata angolul itt található.

A Nap Csillagászati Képe (Astronomy Picture of the Day) című weboldal nemcsak zsánerképek bemutatásának helyszíne, hanem sokkal inkább a csillagászati ismeretterjesztésé. Az amatőr asztrofotósok egy-egy képén is el lehet magyarázni, be lehet mutatni egy-egy csillagászati jelenség okát, folyamatát, pillanatát, vagy az Univerzum működésének fizikáját el lehet magyarázni. (Sajna, sokan az APOD-ot összekeverik egy asztrofotós versennyel, amin az ízlés és a művészet versenyzik Univerzum-témában: nem erről van szó. Az APOD egyszerre csillagászati ismeretterjesztő és NASA PR-oldal, nem pedig valamiféle asztrofotós vetélkedő – bár kétségtelen, hogy a legtöbbet látogatott csillagászati oldal, tehát aki itt szerepel a képével, az azonnal hatalmas nemzetközi ismeretséget szerez.)
Ezért a szép asztrotájképek és asztrofotók mellé bekerülnek akár régi és új fekete-fehér fotók, amik történetileg vagy tudományosan értéket hordoznak, vagy (hamis)színes és kompozit felvételek, amelyeken az asztrofizikai jelenségeket és folyamatokat lehet elmagyarázni röviden, vagy éppen számítógépes szimulációk eredményei is, amiken a legújabb tudományos eredményeket igyekeznek vizualizálni.
VCSE - A sötét anyag eloszlásának várt szerkezete az Univerzumban - APOD
VCSE – A sötét anyag eloszlásának várt szerkezete az Univerzumban – APOD
A mai kép éppen egy ilyen számítógépes szimuláció eredménye. A sötét anyagot egyre jobban megismerjük, és bár szenzációs hírek arról szólnak, hogy a sötét anyag valóban létező fizikai anyag, amely túl halvány ahhoz, hogy az adott műszerrel és hullámhosszon megfigyelhessük, azért még elég homályos elképzeléseink vannak mibenlétével kapcsolatban. Tudjuk, hogy a korai Univerzumban kevesebb sötét anyag volt, mint manapság; de azt is tudjuk, hogy a galaxisokat kiterjedt sötét halo veszi körbe, ami hidrogénből áll, ami röntgenben jól látszik, látható fényben meg nem, és akár egy galaxis tömegének felét is kiteheti. A galaxisokban keringő fekete lyukakról is csak elvétve vannak még információink. Nem tudjuk, hogy egyes galaxisok miért gazdagok sötét anyagban, mások miért szegények – csak bizonyításra váró ötletek vannak. Mindenesetre egyre több és komoly eredmény van a területen.
Az EUCLID nevű tervezett ESA műhold egyik feladata majd éppen a sötét, tehát nem látható, de gravitációs kölcsönhatásban részt vevő anyag eloszlásának és mennyiségének kimutatása lesz. Noha ezt a fajta anyagot nem látjuk, és a látható anyag mennyiségének 5-10-szerese is lehet, azért gravitációs hatása van, és a körötte mozgó látható anyag (csillagok, galaxisok) mozgását befolyásolja. Ezt onnét látjuk, hogy csak a látható anyagot figyelembe véve pl. a galaxisok rotációs görbéit nem tudjuk értelmezni, ahhoz egy, a galaxist átható vagy akörüli sötét, de gravitáló anyagra is szükség van. Ugyanígy, egyes távoli galaxishalmazok, kvazárok és szupernóvák képe megtöbbszöröződhet gravitációs lencsehatás révén egy közelebbi galaxis vagy galaxishalmaz körül, és a pontos képalkotáshoz valamennyi, így vagy úgy eloszló sötét anyagot is figyelembe kell venni. Ha a távoli kvazár vagy galaxishalmaz fényességeloszlása ismert, a lencsehatás révén kialakult képpel összevetve a sötét anyag térbeli eloszlása feltérképezhető. Az előzetes eredmények alapján a sötét anyag eloszlása nem egyenletes, a galaxisok körül koncentrálódik.
A mellékelt képet a Hayden Planetáriumban (USA) készítették. A képen keresztben kb. 500 millió fényévnyi területet próbáltak meg ábrázolni – ez elég jelentős a belátható Univerzum kb. 13 milliárd fényévnyi sugarához képest. A sárga területek a galaxishalmazok, a sötét sávok a sötét anyag filamentumai.
Statisztikusan ez a kép egyezésben van a jelenleg rendelkezésünkre álló csillagászati adatokkal, de az EUCLID mérései után nyilván jelentősen finomodik, pontosodik majd, ezáltal módosulni fog.
Aki pedig idáig eljutott az olvasásban: ma van a Nemzetközi Sötét Anyag Nap – ez egy csillagászati berkeken belül megült pszeudoünnep. Célja, hogy a szakma képviselőinek és a szakmán kívülieknek a figyelmét felhívja erre a nagyon rejtélyes ügyre. Aki többet szeretne erről tudni, az itt olvashat róla: https://www.darkmatterday.com/about-dark-matter/#faq
Boldog Nemzetközi Sötét Anyag Napot!

Izgalmas kérdés, hogy a fizikai állandók mennyire állandók. (A Hubble-állandó csillagászati állandó, és tudjuk róla, hogy időben változik – de most a fizikai állandókról van szó.) A múlt században volt olyan kozmológiai elmélet, ami az Univerzum akkor ismert tulajdonságait azzal próbálkozott megmagyarázni, hogy a gravitációs állandó időben csökken. Noha ez az Univerzum tágulását okozhatná, de akkor a bolygópályák sem lennének stabilak, és a Naprendszerünk már rég összeomlott volna, pedig itt van még. A csillagokat is a gravitációjuk tartja egyben, a belsejükben felszabaduló magenergia (fúziós energia) tart egyensúlyt a gravitációval: ha a gravitációs állandó időben csökkenne, akkor a csillagokat a saját fúziós energiájukból származó fénynyomás repítené szét. Ez is ellentétben áll a megfigyelésekkel: a csillagokat ma is látjuk. A gravitációs állandó így időben nem változhat (vagy észrevehetetlenül kicsit, aminek nincsenek kozmológiai következményei) – de mi a helyzet a többi állandóval?

Az asztrofizikusok e kérdés megválaszolására az ún. finomszerkezeti állandót szeretik használni. A finomszerkezeti állandó cgs-egységrendszerben az elektron töltésének négyzete osztva a fénysebességgel és a Planck-állandó 2 pi-ed részével. SI-ben kifejezve még 4 pi-vel és a vákuum elektromos permittivitásával is el kell osztanunk. Vagyis SI-ben:

ahol alfával jelöltük a finomszerkezeti állandót, e az elektron töltése, h a Planck-állandó, c a fénysebesség négyzete és epszilon0 a vákuum dielektromos állandója (permittivitása).

Mindenesetre ezek mindegyike természeti állandó, és ha ezt a kombinációt megmérjük, akkor vagy egyik említett fizikai állandó sem változik az időben, vagy kettő vagy több szinkronban változik (pl. a Planck-állandó csökkenését a fénysebesség növekedése kompenzálná és további hasonló kombinációkat lehetne felírni). Mindenesetre elég valószínűtlen lenne ilyen szinkron változás.

A finomszerkezeti állandó azért jobb, mintha az egyes benne szereplő állandókat külön-külön mérnénk meg, mert ez a kombináció sok milliárd fényév tér-, és ennek megfelelő időtávolságból is mérhető, míg pl. a Planck-állandót nem tudjuk megmérni több milliárd évvel ezelőtt, csak most és a jövőben.

A finomszerkezeti állandót 1916-ban írta fel először A. Sommerfeld, amikor a hidrogén színképének finomszerkezetét tanulmányozta: a hidrogén főbb színképvonalai jobb felbontású színképelemző készülékben ugyanis több vékonyabb, egymáshoz közeli vonallá esnek szét. Sommerfeld ezeket azzal magyarázta – sikeresen -, hogy az elektron a proton körül a hidrogénben nemcsak körpályán, hanem ellipszispályán is keringhet, és a sok-sok hidrogénatomban különböző excentricitású ellipszispályák fordulnak elő, amelyek mindegyike csak egy vonalért felelős, együtt azonban kiadják a sok finom vonalat. A vonalak közötti hullámhossz-különbség éppen a finomszerkezeti állandóval arányos.

Érdekességképpen említjük, hogy igen sok helyen előfordul még: pl. Sommerfeld eredeti értelmezésében az elektronnak a hidrogénben a legkisebb sugarú körpályán meglévő sebessége szorozva a finomszerkezeti állandóval a fénysebességet adja. (A finomszerkezeti állandó dimenziótlan, és értéke 137,035999139(31), a zárójelben álló számok az utolsó két számjegy bizonytalanságát jelzik, a megelőző számjegyek biztosak.) A kvantumelektrodinamikában pedig az elektronok és a fotonok közötti erőhatásban fordul elő. A Bohr-sugár (a hidrogénbeli elektron legkisebb lehetséges pályasugara) szorozva a finomszerkezeti állandó két pi-szeresével megadja az elektron Compton-hullámhosszát. Az elektrogyenge elméletben is fontos tényezőként fordul elő az egyenletekben.

Éppen a színképvonalak előállásában játszott szerepe miatt távoli objektumok színképéből ki lehet számolni értékét.

Mivel az elektronok és a fotonok egymáson való ütközésében (pontosabban szóródásában) is szerepet kap, a Planck-műholddal megvizsgálták, hogy a kozmikus mikrohullámú háttérsugárzás, z=1100-as vöröseltolódásnál mennyi volt az elektron tömege és a finomszerkezeti állandó értéke: akkor, amikor az Univerzum kora még csak kb. 379 ezer év volt (maga a kozmikus háttér kialakulása kb. 115 ezer évig tartott, ennek a háttérsugárzásnak az utolsó fotonjai 487 ezer éves korban keletkeztek; 379 ezer év körül e sugárzás keltésének a maximuma volt).

A kozmikus háttérsugárzásnak a Planck ESA-műhold által gyűjtött tulajdonságainak elemzésével azt találták angliai csillagászok, hogy a finomszerkezeti állandó és az elektron tömege az azóta eltelt kb. 13,7 milliárd évben nem változott, hibahatáron belül megegyezik a mai értékkel. Még pontosabban: a finomszerkezeti állandó legfeljebb 0,22%-kal (0,33%-os hibahatárral), az elektron tömege legfeljebb 0,26%-kal (0,94%-os hibahatárral) térhetett el a mai értéktől. Még szebb eredményük, hogy még azt is meg tudják mondani ezekből a mérésekből, hogy ha volt is változás, az legfeljebb minden egyes egységnyi z-változásra legfeljebb 0,05% lehetett egy hatványfüggvény szerint, de hibahatáron belül ez is nulla.

Végkövetkeztetés: a fizikai állandók igen erősen állandók voltak az utóbbi mintegy 13,7 milliárd évben, a kozmikus háttérsugárzás kialakulása óta. Ez mérési eredmény, ami sokkal szigorúbb, mint bármi elmélet. Korábbra időben nem tudunk visszatekinteni (csak gravitációs hullámokkal, de azok nem állnak kapcsolatban a finomszerkezeti állandóval, így annak mérésére sem használhatók fel).

Forrás: https://arxiv.org/abs/1705.03925

Mai kép - A Rák-köd - Csizmadia Szilárd - VCSE
Mai kép – A Rák-köd – Csizmadia Szilárd – APOD

A Bika csillagképben látható Rák-köd fényessége és közelsége okán az egyik – vagy a – legjobban tanulmányozott szupernóvamaradvány. Arab, kínai, japán és – bizonytalanul értelmezett szövegek szerint – európai csillagászok figyelték meg 1054. július 4-én és az azt követő napokon először, a hajnali égen a szupernóvát. Lehetséges, hogy pueblo-indiánok is hagytak ránk emléket a szupernóva-megfigyelésükről, csak néha nehéz értelmezni az általuk hagyott piktogramokat. Az SN 1054 jelű szupernóva szabad szemmel két évig volt látható az égen. A felrobbant csillag maradványa a táguló M1 vagy becenevén a Rák-köd, de ezt az objektumot csak távcsővel lehet látni, ezért a 18. századig nem ismerték. Ch. Messier fedezte fel a maradványt 1758-ban, jele M1 lett katalógusában.

1921-ben először C. O. Lampland vélt felfedezni a Rák-ködben változásokat. Ugyanabban az évben J. C. Duncan megerősítette ezt a felfedezést, különböző években készített fotók összehasonlításával. Ugyancsak 1921-ben állította össze K. Lundmark a régi kínai krónikák alapján a “vendégcsillagok” (galaktikus nóvák és szupernóvák ősi kínai neve) listáját, időpontjukat, égi helyzetüket, és ezzel összevetve sikerült azonosítani a köd és az 1054-es szupernóva kapcsolatát (Bár Biot-ék már 1843-ban említették az 1054-es nóva régi megfigyeléseit, de Lundmark listája teljesebb).

1928-ban Hubble vizsgálta a ködöt, megállapítva mérete növekedését és annak ütemét. Amikor a ködbeli mozgásokból visszaszámolták, hogy a köd mikor kezdett el tágulni, visszakapták az 1054-es robbanási időpontot.

A 12 fényév legnagyobb méretű Rák-köd kb. 6500 fényévre van tőlünk.

1957 után lassan lehetőség nyílt űrtávcsöveket küldeni az űrbe, így a földfelszínről nem látható hullámhosszakon is lefényképezni a ködöt. A mellékelten bemutatott kép a Rák-köd 21. századbeli képe. Négy űrtávcső: a Chandra röntgenben (rózsaszín), az XMM-Newton ultraibolyában (kék), a Hubble Űrtávcső láthatóban (az összes látható színárnyalatot egy színnel, zölddel jelenítették meg), a Spitzer infravörösben (sárga) fotózta le a ködöt. A földfelszínről pedig a VLA rádiótávcső-rendszer rádióhullámhosszakon vette fel a képét (ez vörössel van jelölve a képen). A kép közepén lévő fényes kerek valami a tengelye körül másodpercenként 30-szor megforduló Rák-ködbeli pulzár, egy neutroncsillag, aminek a képe és a hozzá kapcsolódó spirálszerű áramlatok a túlexponált röntgenképen tűnnek elő, ezért a rózsaszín ott átment fehéres telítettségbe. (A neutroncsillag sokkal kisebb, mint ami a képen látszik: optikai effektus, a kép túlexponálása okozza kiterjedt voltát.)

Ilyen képet az űrtávcsöveket megelőző korban és a modern rádiócsillagászati eszközök nélkül nem lehetett volna készíteni, mert a Föld légköre elnyeli, nem engedi át az égitestek infravörös, röntgen- és ultraibolya sugárzását.

Az itt bemutatott kép a nap Csillagászati Képe (Astronomy Picture of the day, APOD) volt a NASA-nál 2017. május 11-én: https://apod.nasa.gov/apod/ap170511.html.